A Comparative Study of Conventional Methods and GeneXpert Mycobacterium Tuberculosis Rifampicin (MTB/RIF) Assay for Diagnosis of Childhood Pulmonary Tuberculosis

Allah Rakhia1*; Taj Muhammad Laghari2; Muhammad Ayaz Mustufa1; Yahya Noori3; Rahila Bhutto2; Zaheer Ali3

1PHRC, Specialized Research Centre on Child Health, National Institute of Child Health, Karachi, Pakistan.
2National Institute of Child Health, Jinnah Sindh Medical University, Karachi, Pakistan.
3PRL, NTP, Ojha Institute Of chest Diseases, DUHS, Karachi, Pakistan.

Abstract

Background: Keeping in view, the peculiar attributes like similarity of symptoms with other respiratory diseases, Paucibacillary nature and inability of children to expectorate which make diagnosis of Pediatric Tuberculosis (TB) challenging, a study was conducted to find best available choices of diagnostic tests for early case detection of childhood TB particularly MDR TB.

Methods: This comparative analytical study of 15 months was done at Pakistan Health Research Council (PHRC), Specialized Research Center on Child Health (SRCCCH), National Institute of Child Health (NICH) and Provincial TB Laboratory Ojha Institute of chest diseases Karachi. Our study population comprised of 143 probable cases of pulmonary TB below the age of 15 years. One sample from each subject was obtained and subjected to ZN staining for AFB microscopy, GeneXpert MTB/RIF assay, Culture on Lowenstein–Jensen (LJ) media and Mycobacterium Growth Indicator Tube (MGIT) according to standard operating procedures of WHO.

Results: Out of 143 samples 7 (4.89%) were positive for Mycobacterium tuberculosis (MTB) via Xpert MTB/RIF assay while 3 (2.09) were positive through AFB microscopy, LJ culture and MGIT. When compared with LJ culture, sensitivity and negative predictive value of Xpert MTB/RIF were 100% and 97.14% while specificity and positive predictive value were 97.14% and 43% respectively.

Conclusion: Xpert MTB/RIF is a rapid test that can aid in timely diagnosis of peds TB, facilitating the timely treatment. However, specificity and PPV need to be taken into account.

Keywords: AFB microscopy; LJ and MGIT; Xpert MTB/RIF; Peds TB.
Introduction

Tuberculosis (TB) is among the major killer diseases in children. It is broadly categorized as pulmonary TB (Tuberculosis affecting the lungs) and extra pulmonary TB (TB involving body organs other than lungs). Most common symptoms of the child TB are cough, fever, anorexia, weight loss, sweating, breath difficulty, lymph adenopathy, wheezing, it is mostly transmitted through adult contacts and can be investigated through contact screening but its diagnosis becomes challenge because children do not or rarely expectorate [1]. About one third of the world’s population is infected with the TB disease, 95% of which are in the developing countries like Pakistan and 98% of all TB related deaths occur in these regions. New cases of TB were estimated to be 10 million, among them 1.1 million were below the age of 15 years and 3.2 million were women resulting into death of 1.5 million people including 890000 men, 480000 women and 140000 children in 2018 [2]. High incident rate of TB and low compliance rate with treatment even up-to 40% in developing countries is leading cause of treatment failure[4]. Early diagnosis and treatment is the main TB control strategy that seizes the disease by blocking its sources [2,3]. Multi Drug Resistance TB (MDR-TB) is defined as resistance to Isoniazid and Rifampicin with or without resistance to other First Line Drugs (FLD), estimated cases of Multidrug Resistance TB (MDR-TB) in 201 were 484000 and countries using GenXpert MTB/RIF assay as essential diagnostic test have shown mark able increase in early case detection of MDR TB [1], besides this rapid detection of M. Tuberculosis and Rifampicin (RIF) resistance in infected patients is essential because TB is highly contagious disease. Although, Culture is the “gold standard” for final determination but it takes 2 to 8 weeks for positive and negative case identification respectively. Similarly, smear microscopy for Acid-Fast Bacilli (AFB) is no doubt a rapid and inexpensive technique but poor sensitivity and poor Positive Predictive Value (PPV) diminish its role. Rapid identification that is necessary for early start and positive response of treatment is mainly dependent on nucleic acid amplification techniques [4]. In this regard, Gene Xpert MTB/RIF assay is a novel device that performs both sample processing and hemic nested real-time PCR analysis in a single step for the diagnosis of tuberculosis and rapid detection of Rifampicin resistance in clinical specimens[5]. In this process 81-bp fragment of the M. tuberculosis rpoB gene is amplified and probed for mutations responsible for Rifampicin resistance. This whole process is completed in less than 2 hours [6]. A study conducted in Tunisia revealed that use Gene Xpert MTB/ RIF dramatically improved the diagnosis of lymph node TB, according to this study, the sensitivity and specificity of the Xpert assay were 87.5% and 73.3%, respectively [7]. Similarly, a study conducted in Lahore endorsed the findings of above mentioned study for extra pulmonary TB [8]. Another study from Lahore revealed similar findings especially in smear negative pulmonary and Extra Pulmonary TB (EPTB) samples as compared to the conventional ZN staining. Among EPTB cases the highest yield of positivity was shown in Pus samples. Authors of this study suggested that use of TB Gene Xpert in endemic areas can serve well the purpose of correct diagnosis within minimal time. A study conducted in Turkey concluded that the Gene Xpert MTB/ RIF test is such a simple method that routine staff with minimal training can perform it. results of the said study show that sensitivity of Gene Xpert equals with that of culture for smear-positive specimens but it was low in smear-negative pulmonary and extra pulmonary specimens because of less number of bacilli in these samples [10]. Lower positivity of both sputum smear (15 %) and culture (30-40%) make diagnosis of child TB a challenge [11]. In terms of time consumption, Gene Xpert as it has been proved by a study from Abbottabad takes just 2 hrs while LJ Culture takes 5 weeks and Zn smear takes 1-24. Thus, it can be precluded that use of MTB/RIF assay can detect not only the etiological agent but it will also detect MDR within two hours [12]. These findings have also been endorsed by a study from New Delhi. Therefore, Gene Xpert helps well in detection of MTB and quicker evaluation of MDR that lead towards reduction in MDR and mortality associated with it [13]. During literature search we found that studies available nationally or internationally have mostly been conducted on adults [4-16].

Rationale: As early diagnosis and start of treatment play a vital role in success of TB treatment, wrong or late diagnosis may cause treatment failure and drug resistance. In case of childhood TB, diagnosis is challenge and treatment is often initiated on the basis of contact history, clinical sign and symptoms, Chest X-Ray (CXR) and TST (Tuberculin Skin Test). Reasons for difficulty in diagnosing child TB may include resemblance of its symptoms with other diseases, Paucibacillary nature and very low/no expectoration by child patients. Therefore, it should be dealt differently from adult TB. Hence, we planned this study to determine the utility of Xpert MTB/RIF assay in our settings. It is also expected that this study will help in early detection of MDR TB.

Subjects and methods

This comparative analytical study of 15 months was done at PHRC, SRCCH, NICCH and Provincial TB Lab Ojha Institute of chest diseases Karachi. Convenient Sampling Technique was used to recruit the subjects

Inclusion Criteria: Probable cases of pulmonary TB suggested by multiple criteria like history of contact, ATT, radiological findings, immunological reaction, biopsy, sign and symptoms etc) having PPA score 4 or 5, age 15 years or below 15 were included in the study.

Exclusion Criteria: All those patients who refused to participate in the study were excluded.

Study instrument: Structured Performa was used for data collection including demography, socio-economic status, clinical history, scoring chart and diagnostic tests. After taking written consent from parent/guardian, demographic and clinical information were collected on a Performa.

Depending on age and convenience of the patient, one sample of either Gastric Aspirate (GA), Sputum or pleural fluid was obtained from each patient and it was subjected to ZN staining for smear microscopy GeneXpert Mycobacterium Tuberculosis Rifampicin (Xpert MTB/RIF) assay, Culture on Lowenstein–Jensen (L.J) media and Mycobacterium Growth Indicator Tube (MGIT). Results were entered and analyzed on Statistical Package for Social Sciences (SPSS) version 20.

Sample collection

Sputum samples were collected preferably outdoor in open air or in a separate ventilated room.

Patients were suggested to clean mouth with water rinse, inhale and exhale for 2-3 time, keep both hands on hips, cough forcibly and collect sputum in the mouth, spit the sputum carefully into a wide-mouthed, unbreakable leak proof container and close the lid tightly to avoid spills or spilling outside the
Each specimen was labeled with the name of patient and local lab register number that matched with information on request form.

Gastric aspirates were collected by physician according to Clinical Laboratory Standards Institute (CLSI), National Tuberculosis Program (NTP) and WHO protocol. Patient was kept on fasting (NPO) at least for 6 hours. Details of the procedure was explained to the parents/caregiver and consent was obtained. After that, an appropriate sized feeding tube (10-12G) was inserted through one nostril till it reached the stomach. The position of tube was checked by insufflation of air into stomach. The contents of stomach were aspirated completely, kept in sterile container. Usual volume collected was around 10 ml. Samples were transported to laboratory for further processing within 1–2 h of sample collection.

ZN staining for smear microscopy was done according to WHO recommended protocol [14].

Xpert MTB/RIF assay: Sample reagent was added in a 2:1 ratio to unprocessed specimen in 15 ml falcon tube and the tube was agitated twice during 15 minute incubation period at room temperature. Then 2 ml of the inactivated material was transferred to the test cartridge by a sterile disposable pipette (provided with kits). Cartridges were loaded into the Gene expert. The interpretation of data from TB/RIF test is software based [15].

Culture on Lowenstein–Jensen (L.J) media: After decontamination of the sputum samples they were inoculated on LJ media slopes.

MGIT: Added 0.8 mL of the supplements mixed above to each MGIT tube using a sterile pipette. Then, added 0.5 ml specimen to the appropriately labelled MGIT tube. Immediately recapped the MGIT tube tightly and mix well by inversion several times.

MGIT recorded the date the tube was flagged as positive and the number of days and hours taken to reach positivity (TTP: Time To Positive, also known as TTD: Detection) [16]. Taking LJ culture as Gold standard, sensitivity, specificity, positive predictive value and negative predictive values of Xpert assay were calculated by following formula.

Sensitivity

\[
\text{Sensitivity} = \frac{\text{True positive (TP)}}{\text{True positive (TP) + False negative (FN)}} \times 100
\]

Specificity

\[
\text{Specificity} = \frac{\text{True negative (TN)}}{\text{True negative (TN) + False positive (FP)}} \times 100
\]

Negative predictive value (NPV)

\[
\text{Negative predictive value} (\text{NPV}) = \frac{\text{True negative}}{\text{False Negative} + \text{True negative}} \times 100
\]

Positive predictive value (PPV)

\[
\text{Positive predictive value} (\text{PPV}) = \frac{\text{True positive (TP)}}{\text{False positive} + \text{True positive}} \times 100
\]

Sample size: Sample size was 143 for the proposed study calculated on the basis of previous study; in that study, prevalence of TB among children was estimated to be 10.41% in developing countries including Pakistan [2]. Sample size was calculated at 95% confidence interval with 5% precision using EPI info version 6.

Results

Out of 143 subjects 78(54.5%) were male while 65(45.4%) were female. Means of age, weight, Family size and Expenditures incurred were 6.14, 14.54, 6.056 and 30030 respectively (Table 1).

Our results show that gender, type of specimen, vaccination status have no significance on results of geneXpert (P-Value >0.05) while Family history of TB and history of contact have significant effect on genexpert results (P-value <0.05) (Table 2).

Our study found that 7 (4.89%) samples were positive for MTB via Xpert MTB/RIF assay while 3(2.09%) were positive through AFB microscopy, LJ culture and MGIT (Figure 1).

When compared with gold standard LJ culture sensitivity and negative predictive value of Xpert MTB/RIF were 100% and 97.14% while specificity and positive predictive value were 97.14% and 43%. GeneXpert not only detected all LJ culture positive samples but it also detected additional 4 samples which were negative on LJ culture (Table 3).

Table 1: Demographic features of the subjects.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± S.D</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>6.14 ±3.36</td>
<td>1-15</td>
</tr>
<tr>
<td>weight</td>
<td>14.54±7.53</td>
<td>2.5-34</td>
</tr>
<tr>
<td>Family size</td>
<td>6.056±2.062</td>
<td>3.14</td>
</tr>
<tr>
<td>Expenditures incurred</td>
<td>30030±42429</td>
<td>249700</td>
</tr>
</tbody>
</table>

Table 2: Determinants of Probability of Gene Xpert Results.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gene Xpert +ve N= (%)</th>
<th>Gene Xpert -ve N= (%)</th>
<th>Total</th>
<th>Percentage of N=143</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>02 (2.56)</td>
<td>76 (97.43)</td>
<td>78</td>
<td>54.5</td>
<td>0.152</td>
</tr>
<tr>
<td>Female</td>
<td>05 (7.69)</td>
<td>60 (92.30)</td>
<td>65</td>
<td>45.4</td>
<td></td>
</tr>
<tr>
<td>Type of Specimen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric aspirate</td>
<td>04 (3.7)</td>
<td>104 (96.29)</td>
<td>108</td>
<td>75.5</td>
<td>0.145</td>
</tr>
<tr>
<td>Sputum</td>
<td>03 (66.66)</td>
<td>32 (39.33)</td>
<td>35</td>
<td>24.47</td>
<td></td>
</tr>
</tbody>
</table>
Family history and history of contact have profound effect on disease transmission therefore it has been declared mandatory for national TB control programs by WHO to evaluate the contacts of index patients, add scores in TB score and give Isoniazid (INH) prophylaxis to pediatric contacts of adult patients. In this context our finding suggest significant association (P-Value = 0.03 and 0.02) respectively between Family history, history of contact and GeneXpert results.

In our study, Yield of GeneXpert in suspected (probable TB) cases was 5% while AFB smear, MGIT and LJ culture yielded <3%. Reasons may be the majority of specimens were gastric aspirates (75.5%) than sputum. Sputum gives better yield on LJ and AFB microscopy smear because its buoyant density, Instinct viscosity and residual debris content are high as compared to GA samples thus our findings are consistent with previous studies.

In our study, Sensitivity, and negative predictive value of Xpert MTB/RIF were 100% and 97.14% while specificity and positive predictive value were 97.14% and 43% respectively these values remained little bit low in a study conducted by Ghariani et al [22]. Higher values of sensitivity, specificity and NPV endorse the capability of Xpert to 100% detect the disease in concerned population along with 100% efficiency in finding out the negative subjects. The low positive predictive value in our results may be due to the low frequency of the disease (<3%) in the population we studied. Other studies from India have reported sensitivity of Xpert MTB/RIF as 95.65% and 88.89% respectively but their PPVs were very high (84.21%) compared to our results [23,24].

Similarly, studies conducted in Pakistan have shown high yield of Xpert as compared to AFB smear and LJ culture but their PPVs were quite high i.e. ≥ 70% as compared to our findings. Major difference in these studies as compared to our study could be the higher frequency of the disease (43%) [25-27].

Limitations

Most of the previously conducted studies have been done on adults therefore; yield of Xpert MTB assay, AFB microscopy and LJ culture was low in our study because it was done on children.

Secondly our study was hospital based therefore results cannot be generalized over general population.

Conclusion

Xpert MTB/RIF is a rapid test that can aid in timely diagnosis of pediatric TB, facilitating the timely treatment. However, specificity...
and PPV need to be taken into account.

Recommendations: All health facilities with tuberculosis, especially pediatric tuberculosis, should have installed Xpert assay in their laboratories.

Funding Source: Pakistan Health Research Council provided financial support via grant No: 111/16/RDC/NICH, Karachi for purchase of project material and required logistics.

Ethical approval and consent to Participate: Ethical Clearance was obtained from IERB of host Institute (Ref. no. 12/201711). Informed written consent was obtained from each individual for participation.

Competing interests: The authors declare that they have no competing interests. No financial or non-financial benefits have been received from any party related directly or indirectly to the subject of this article.

Contributor’s statement: AR received grant for the study. AR, TML and MAM contributed to design, conducting of the study and preparation of the manuscript. TML, and YN, RB and ZA contributed to the data collection and supervision. All authors read and approved the final manuscript.

References

1. Ashmi C. Evaluation of Role of Xpert MTB/RIF in Diagnosis of Extra Pulmonary Tuberculosis in Patients attending Tertiary Care Hospital: PSG Institute of Medical Sciences and Research, Coimbatore. 2019.

