
Sangeeta Tripathy1*, BKS Chauhan; Umesh Shukla3; Devajit Nath4

1Department of Radiology, Super Speciality Paediatric Hospital and Post Graduate Teaching Institute (SSPH&PGTI) Sector-30, Noida, India -201303.
2Retired Radiologist, Dr. BKS Chauhan, Delhi, India.
3Department of Gastroenterology, Super Speciality Paediatric Hospital and Post Graduate Teaching Institute (SSPH&PGTI) Sector-30, Noida, India -201303.
4Department of Pathology, Super Speciality Paediatric Hospital and Post Graduate Teaching Institute (SSPH&PGTI) Sector-30, Noida, India -201303.

*Corresponding Author(s): Sangeeta Tripathy

Department of Radiology, Superspeciality Paediatric Hospital & Postgraduate Teaching Institute, Sector – 30, Noida, India 201303.
Tel: 72-8900-2268, Fax: 91-11-28745741;
Email: dr.sangeetatripathy@yahoo.co.in

Received: Sep 21, 2020
Accepted: Oct 28, 2020
Published Online: Nov 02, 2020
Journal: Journal of Radiology and Medical Imaging
Publisher: MedDocs Publishers LLC
Online edition: http://meddocsonline.org/
Copyright: © Tripathy S (2020). This Article is distributed under the terms of Creative Commons Attribution 4.0 International License

Abstract

Introduction: The Corona Virus disease (COVID-19) is declared as pandemic by WHO on 11th March 2020. This is an infectious disease caused by novel corona virus SARS-CoV-2. Children seems to be relatively unaffected by this virus or other closely related corona viruses. Definitive diagnosis of COVID-19 requires a positive RT-PCR test. X-Ray chest & CT-Chest is not used to diagnose COVID-19 but helpful in assessing disease progression & complications. Only 1.2% to 1.7% of the paediatric COVID-19 cases have been reported from USA and China respectively. US data of pediatric COVID-19 cases as of August 27th 2020: Cumulative child cases-4, 76,439 which is 9.5% of cumulative percent children of total cases. As the pandemic progresses, portable chest X-ray will play an important role because of its ready availability as RT-PCR has long turnover time and in places where limited access to RTPCR is there.

Method: A single centre retrospective, observational study of confirmed COVID-19 pediatric patients admitted to SSPH & PGTI, NOIDA, North India during March 2020 to July 2020 were enrolled in the study. The RT-PCR positive COVID-19 patients CXRs were analyzed for their patterns and its progression in children and also follow up CXR if required were assessed for finding out complications if any. This study also proves that CXR is the first line tool for detecting the COVID-19 disease in areas of world where limited access to RTPCR is there or long turnaround time of

Keywords: SARS-CoV-2; Pandemic; CXRs; CT Chest; Paediatric

Introduction

Paediatric age group account for 1-5% of diagnosed COVID-19 cases. Paediatric corona virus disease (COVID-19) infection is relatively mild as compared to adults with rare mortality. Prognosis appear to be better in children & infected children are mostly asymptomatic & hence diagnosis is difficult without population screening globally. The US has reported a percentage of 1.7% of paediatric COVID-19 out of 1,49,082 confirmed cases between 12th Feb & 2nd April 2020.

The diagnosis of COVID-19 was according to the Ministry of Health & FW (MOHFW), Govt. Of India (GOI) guidelines & confirmed by RT-PCR performed on nasopharyngeal and throat swab sample of the patient.

SARS-CoV-2 has a higher transmission capability compared with closely related Viruses causing severe acute respiratory syndrome SARS (2002-2003) & MERS. Children & young adults are less severely affected in India than adults. The American college of Radiology (ACR) noted that CT suite decontamination required after scanning of COVID-19 patients may disrupt the radiological service availability & suggest that portable chest X-ray may be used to minimise the risk of Cross infection.

The probable reasons being COVID-19 is milder in children are:-

1. In paediatric lungs & other tissue, increased expression of ACE 2 gives further protection and helps in uneventful clinical scenario [22].

2. In children there is hindrance of virus entry into lung pneumocytes as there is higher frequency of beating lung cilia in children [22].

3. Due to decreased generation of thrombin & fibrin formation, children have low risk of COVID-19 associated acute respiratory distress syndrome.

4. Less exposure of children to pollutants and particulate matter, protect lung & airways.

5. Lack of co-morbidities in children protects their lungs & airways.

6. Children do not face cytokine storm & thus do not face severe complications normally.

7. The exposure of children to various vaccines [23] as per universal immunization programme in India helps in immune system activation in children.

8. Children are relatively free from physical & mental stress which protects them.

Aim

1. To establish the role of chest x-ray (CXR) in identifying paediatric pulmonary lesions in COVID-19.

2. To establish the role of CXR (Chest X-Ray) as primary tool for identification of disease.

3. To find out the disease pattern in children & its progression.

4. To follow up lung abnormalities by CXR if required.

Material and method

A single centre, retrospective, observational study of COVID-19 pediatric patients from our tertiary care paediatric hospital, SSPH & PGTI, NOIDA, North India, has been done where all the lab confirmed corona virus disease cases have been included. CXRs taken from 19th March 2020 to 31st July 2020 were collected & analyzed.

The CXRs were done by a portable 100mA X-Ray machine stationed in COVID-19 ward whenever there is need during the clinical course. The CXRs were analysed & degree and type of lung involvement were found on CXRs and follow up CXRs if required.

The demographic data and radiological findings of the enrolled patients were recorded. The patterns of manifestations and degree of severity in CXRs were documented & lung abnormalities in follow up CXRs if there, were also recorded for monitoring of patients.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Age Group</th>
<th>No. of Patient</th>
<th>Percentage of Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-1 month</td>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>2</td>
<td>1 month -1 year</td>
<td>12</td>
<td>13%</td>
</tr>
<tr>
<td>3</td>
<td>1 year – 10 year</td>
<td>54</td>
<td>58%</td>
</tr>
<tr>
<td>4</td>
<td>10 years – 18 years</td>
<td>23</td>
<td>25%</td>
</tr>
</tbody>
</table>

The youngest case in our study is of 3 days who recovered in due course of time. The median age is 7 years in our study.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Gender</th>
<th>Number of cases</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>56</td>
<td>60%</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>37</td>
<td>40%</td>
</tr>
</tbody>
</table>

Male children constitute about 60% of cases whereas female patients were 40% in our study.
Table 3: Clinical features - Patients presented at the time of admission (n=93).

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Clinical presentation</th>
<th>Number of cases</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asymptomatic</td>
<td>49</td>
<td>53%</td>
</tr>
<tr>
<td>2</td>
<td>Fever</td>
<td>11</td>
<td>12%</td>
</tr>
<tr>
<td>3</td>
<td>Cough</td>
<td>8</td>
<td>09%</td>
</tr>
<tr>
<td>4</td>
<td>Running nose</td>
<td>1</td>
<td>01%</td>
</tr>
<tr>
<td>5</td>
<td>Sore throat</td>
<td>6</td>
<td>06%</td>
</tr>
<tr>
<td>6</td>
<td>vomiting</td>
<td>3</td>
<td>03%</td>
</tr>
<tr>
<td>7</td>
<td>Redness of eye</td>
<td>3</td>
<td>03%</td>
</tr>
<tr>
<td>8</td>
<td>Rash</td>
<td>1</td>
<td>01%</td>
</tr>
<tr>
<td>9</td>
<td>Diarrhoea</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>10</td>
<td>Tiredness</td>
<td>3</td>
<td>03%</td>
</tr>
<tr>
<td>11</td>
<td>Body Pain</td>
<td>4</td>
<td>04%</td>
</tr>
<tr>
<td>12</td>
<td>Breathlessness</td>
<td>5</td>
<td>05%</td>
</tr>
</tbody>
</table>

Out of the total children, (n=49) 53% were asymptomatic, fever (n=11) 12% and cough (n=8) 9% were most frequent symptoms.

Table 4: Co-morbidities found in our study (n=93).

<table>
<thead>
<tr>
<th>S. No</th>
<th>Co-morbidities</th>
<th>Number of Cases</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>History of trauma with orbital fracture, Chest trauma</td>
<td>1</td>
<td>01%</td>
</tr>
<tr>
<td>2</td>
<td>Coeliac disease</td>
<td>1</td>
<td>01%</td>
</tr>
<tr>
<td>3</td>
<td>AML</td>
<td>1</td>
<td>01%</td>
</tr>
<tr>
<td>4</td>
<td>PTB</td>
<td>1</td>
<td>01%</td>
</tr>
<tr>
<td>5</td>
<td>Oral ulcers</td>
<td>1</td>
<td>01%</td>
</tr>
<tr>
<td>6</td>
<td>DMD</td>
<td>1</td>
<td>01%</td>
</tr>
</tbody>
</table>

Table 5: Contact in family/locality.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Contact/noncontact</th>
<th>Number of cases</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Contact</td>
<td>80</td>
<td>86%</td>
</tr>
<tr>
<td>2</td>
<td>Noncontact</td>
<td>13</td>
<td>14%</td>
</tr>
</tbody>
</table>

Table 6: Radiographic findings on CXR (Chest X-Ray) (n=21).

<table>
<thead>
<tr>
<th>S. No</th>
<th>Number of cases</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of patients with normal CXR</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Number of patients with abnormal CXR</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Number of patients with normal CXR who later become abnormal</td>
<td>1</td>
</tr>
</tbody>
</table>

As we get large number of patients who are asymptomatic or with mild symptoms, the CXR findings are normal in 15(71%) in our study, with mild CXR changes in (n=5) 24% of cases.
Table 7: CXR features (Most common findings in CXRs).

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Number of cases</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Consolidation</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Ground glass opacity (GGO)</td>
<td>3</td>
</tr>
</tbody>
</table>

Consolidation and ground glass opacity account for 3 cases (50%) & 3 cases (50%) respectively.

Table 8: Shows degree of severity of lung involvement.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Number of cases</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abnormal CXR –mild (<25%)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Abnormal CXR-moderate (25-50%)</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>No severe case</td>
<td>0</td>
</tr>
</tbody>
</table>

In one child moderate involvement of both lungs noted, who is suffering from AML. No severe involvement case found in this study.

Table 9: Localization of abnormalities in CXRs.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Number of cases</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lower zone consolidation/GGO</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Peripheral consolidation/GGO</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Bilateral lung involvement</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Perihilar consolidation</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Left lung involvement</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Right lung involvement</td>
<td>1</td>
</tr>
</tbody>
</table>

No multifocal or diffuse involvement of lung found in our study. Left lung involvement noted in all six cases.

Figure 3: GGO LMZ

Table 10: Other findings associated with CXRs due to persisting radiologically active lesion in Indian scenario.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Number of cases</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cavity with infiltration (S/o active TB)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Trauma chest with ICD tube in situ with mild LMZ GGO.</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 4: (i) LLZ Peripheral opacity (ii) case of chest trauma With ICD tube insitu with minimal GGO LMZ.

Figure 5: Infiltration LMZ & LLZ thin walled cavity LMZ.

Discussion

COVID-19 pandemic has come with an unprecedented health crisis since December 2019.

The American college of Radiology (ACR) observed that CT suite decontamination required after scanning of COVID-19 pa-
tients may disrupt the radiology service availability and suggest
the portable chest X-Ray (CXR) may be used to minimize the risk
of cross infection [1]. Currently, the Society of Thoracic Radiolog-
y and American College of Radiology (ACR) do not support
the use of chest CT for routine screening of COVID-19 [2].

Most of the infections are asymptomatic in children and
many are not reported. Many have mild symptoms and milder
form of the disease compared to adults [4]. Children comprise
of 1-5% of diagnosed COVID-19 cases [3]. Asymptomatic, mild
and moderate cases account for 90% of all COVID-19 children
with fewer severe cases compared to adults [4,5].

The clinical profile of coronal virus disease infection in chil-
dren is variable and information from developing countries
is not readily available except in china [6]. Most of the COVID-19
children are secondary cases and get infection from intrafamily
transmission [7]. In our study we found intrafamily contact &
locality contact in 80 cases (86%) as found by Jiena oc et al [7].

US data of paediatric COVID-19 cases as of 27th August 2020;
Cumulative child cases 4,76,439 which is 9.5% of cumulative
percent children of total cases.

The median age of infection is 6.7 years (range newborn to
15years) as per one study [5], in our study, the median age is 7
years which is similar to the study mentioned above (range new-
born to 18 years). The male children comprising (n=56) 60% of
cases in our study. The neonate comprise (n=4) 4% of cases and
large number of cases noted in 1-10 years age group (n=54),
58% of cases in our study.

The most common clinical features noticed at the onset in
children are fever (50%) and mild cough (38%) [7,15]. In our
study we observed, fever (12%) & cough (9%) as major symp-
toms. Children have more upper respiratory features [4,10,15].
as has been found in our study (n=20) 22%. Asymptomatic cases
account for (n=49) 53% cases.

Clinical course of COVID-19 in children have been less severe
than adults in our study which is consistent with other reports
published on COVID-19 in children [16].

In a metaanalysis by Meena et al [10] study which showed
that even among the symptomatic COVID-19 cases severe man-
ifestations are found in fewer. They further noted that fever and
respiratory symptoms are most common, though many children
have gastrointestinal manifestations [10]. GI manifestations may
be sole manifestation of COVID-19 [17]. However, we have few
(n=3) 14% of cases.

Co-morbidities found in (n=6) 6% of cases in our study in
COVID-19 ward in sharp contrast to the study done by Banerjee
et al [19]. This may be due to better health of children in this
region.

Paediatric patients have less extensive involvement on imaging
[21], CXR findings helps in identifying the lung lesion in chil-
dren and children with milder disease should not routinely need
CT chest in view of high radiation exposure [11]. First imaging
study done in most of the centres in COVID-19 patients is CXR.
Clinical literature reviewed by Foust and colleagues noted that
studies on chest radiography findings in patients with COVID-19
were relatively scarce, more so in paediatric patients.

The most common imaging pattern in CXR in COVID-19 chil-
dren is bilateral, peripheral predominant; Ground glass opac-

ity or consolidation in mid or lower lung zones as described by
Foust & Lee of Boston Children’s Hospital and other hospitals
around the world [8,18]. In our study lower zone consolidation
is (n=3) 50% of cases which is consistent with above study. In
CXR peripherally located consolidation is noted with multilobar
involvement [12]. In our study we found peripheral consolid-

ation in (n=2) 33% of cases.

Both unilateral and bilateral opacities noted in paediatric
COVID-19 patients, though bilateral opacities are more often
seen. In our study, we found bilateral lung involvement in (n=1)
17% cases and one lung involvement (left lung involvement) in
(n=6) cases, 100% cases. Consolidation is most often found in
paediatric patients. In our study consolidation and GGO noted
in children with COVID-19 in (n=3) 50% cases respectively. No
multifocal or diffuse involvement found in our study.

In our study as reported by authors normal CXR found in
(n=15) 71% of cases & abnormal CXR found in (n=6) 29% of cas-
es, because many children with COVID-19 are with mild symp-
toms or asymptomatic. Mild abnormalities in CXR (n=5) 83%
found in our study with moderate abnormality in one CXR (n=1)
17% case.

Children who were immunocompromised were not at great-
er risk of severe COVID-19 probably due to the fact that a func-
tional host innate immune response is the main driver for lung
damage as described by Antiga et al [14]. In our study a child
(case of AML), there is improvement of consolidation (bilateral,
peripheral) within two weeks who had a moderate course of the
disease during hospitalization.

India being a country where tuberculosis is rampant, we ex-
perienced a case of active pulmonary TB with thin walled cavity
which constitute (n=1) 17% of cases.

Negative CXR does not exclude pulmonary involvement in
patients with lab confirmed COVID-19. CXR also helps in identi-
fication of alternative diagnosis especially if typical CXR findings
of COVID-19 not found. Further sequential CXRs are required
in children with COVID-19 to monitor response to supportive
measures, assess clinical deterioration etc. & post recovery CXR
may be required in cases if child has symptom after negative
RTPCR [20].

Conclusion

Many of paediatric group COVID-19 patients having mild
symptoms due to mild infection and many were asymptomatic.
The commonest presentations were fever and upper respira-
tory symptoms.

The role of radiographic examination (CXR) is basically in-
volved in initial diagnosis, evaluation of disease progress, for
follow up CXR and in post recovery cases if required.

CXR is very essential in diagnosis of lung abnormalities in
children as CT chest in not recommended because of high ra-
diation to children. Therefore, CXR in children with COVID-19
is of vital importance.

Limitation of the study

1. There is sparse literature available in use of CXR in COVID-
19 in paediatric age group.
2. The Study is of observational study, retrospective study
of single centre.
3. Further absence of basic CXR to identify preexisting lung abnormality if any.

4. Some of CXR have subtle change hence limiting the value especially if A-P view taken.

Known facts about the topic: Chest Xray by portable X-Ray unit is the commonly used modality for detection & follow up of lung abnormalities to avoid the risk of cross infection (American college of Radiology). Due to infection control issue by patient transport to CT suite, & non availability of CT in parts of world, CXR has proved to be one of the early and useful methods of identification of lung lesion even though negative CXR does not exclude diagnosis of COVID-19. Further in children to avoid radiation, CT chest is not used. Currently the Society of Thoracic Radiology and ACR (American college of Radiology) do not support the use of Chest CT for routine screening of COVID-19.

Added information from the study: This study from a tertiary care paediatric centre of NOIDA, North India, is obtained to identify paediatric pulmonary abnormalities in COVID-19 and also to establish role of CXR as first line tool for detection/diagnosis of COVID-19 due to easy availability of portable X-Ray units worldwide and reduced radiation dose to children besides reducing the infection, avoiding the burden to CT, and in certain cases removing the need for CT. Further CXR plays an important role in follow up study whenever required and monitoring in severely ill patients (though severely ill patients in paediatric population is less).

Funding: Self

Conflict of interest: None

Ethics committee approval: Approval of exemption for informed consent applied to ethics committee. It is a retrospective study and an observation study with no direct involvement of patients and hence no patient identifiers were included.

Author contribution: The authors of the manuscript declare an equal contribution of the study.

Acknowledgement: We are thankful to the Department of Paediatric, SSPH&PGTI, NODA, INDIA, for their support in carrying out the study.

I, thank my X-Ray technicians for carrying out chest X-Ray of COVID-19 patients. We also thank our HCW for their untiring & selfless work.

References

