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Abstract

Indole is a well-characterized molecule that is used as 
a building block for a multitude of natural compounds. It 
can be utilized directly as a free indole or it can serve as 
a substrate for indole-derived metabolites. Besides serving 
as a substrate for the essential amino acid tryptophan, it is 
also involved in a variety of plant functions. One of the most 
important processes in which involving indole is the chemi-
cal interaction between plants and insects. These insects 
are classified into two groups: i) herbivores, which feed on 
plant tissue (e.g. caterpillars) or consume nutrients from 
the phloem (e.g. aphids), and ii) pollinators, which feed on 
plant nectar and pollen and serve as vectors fortransferring 
male gametes between flowers. The nature of indole and 
indole-derived metabolite usage may differ based on the 
type of interactions. While indole is a volatile compound 
emitted to the plant’s surrounding, functioning as a remo-
tesignal, indole-derived metabolites are mainly non-volatile 
and mostly function asdeterrents that harm herbivores by 
“direct contact”. In this review, we discuss the major role of 
indole in determining plant fitness by attracting pollinators 
and repelling herbivores.
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Indole biosynthesis and catabolism

Indole is an aromatic heterocyclic organic compound, con-
sisting of a six-membered benzene ring fused to a five-mem-
bered nitrogen-containing pyrrole ring [1]. In plants, indole is 
produced via the shikimate pathway, resulting in tryptophan 
(Trp) biosynthesis (Figure 1). The biosynthesis of Trp is cata-
lyzed by the two enzymatic steps: Trp synthase-alpha subunit, 
which converts indole-3-glycerol into indole, and channels it 
directly to the Trp synthase-beta subunit for further conver-

sion into Trp (existing as a α2β2 tetramer complex; [2]). During 
Trp biosynthesis, indole-3-glycerol phosphate is produced and 
directed into different pathways leading to the biosynthesis of 
both volatile and non-volatile compounds (Figure 2). The indole 
moleculeis embedded in many biological systems including the 
neurotransmitter serotonin, the hormone melatonin, or scent 
compounds in human’s sweat and flowers [1,3]. In plants, this 
molecule plays a role in many functions, ranging from Trp pro-
duction to the coloring of yellow petals (terpenoidindole alka-
loid), and the biosynthesis of defense and scent metabolites 
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[4-7]. Indole is also known as a substrate for the phytohormone 
auxin (indole-3-acetic acid), which is fundamental in regulating 
many aspects of plant growth and development [8,9]. Auxin can 
be synthesized through the Trp-dependent auxin biosynthetic 
pathway or the Trp-independent pathway as recently reported 
[5,10]. In monocots that produce non-volatile defense me-
tabolites such as benzoxazinoids, free indole can be produced 
by the indole-3-glycerol phosphate lyase enzyme, named Bx1 
[11-13]. In addition, indole is probably catalyzed by the enzyme 
indole-synthase (INS) in Arabdiopsis thaliana and indole-3-
glycerol phosphate lyase (IGL) in maize (Zea mays; [6,14,15]). 
In relation to plant-insect chemical interactions, indole serves 
as a precursor for deterrence metabolites that are involved in 
plant defense against herbivores (e.g. benzoxazinoids, gramine, 
glucosinolates,and serotonin); in addition indole is emitted as a 
scent (to attract pollinators or predators) or as an aerial priming 
agent to non-attacked plant tissues. Because indole is involved 
in a wide range of plant functions, it is considered to be a ma-
jor factor in determining plant fitness. 

Indole is a fundamental compound in pollinators’ attraction 
by scent signals

Floral signals are an important component of plant-pollinator 
interactions, and are composed of two major traits: visual (e.g. 
color and shape) and olfactory scents volatile compounds; [16]. 
Although visual cues are important in attracting pollinators, 
they often elicit fewer specific responses than odors [17-19]. 
One major scent compound that plays a role in these interac-
tions is indole. It is the most prolific nitrogen-containing volatile 
found in the petals of flowering plants and it is biosynthesized 
and emitted from the flowers of over 30 distinct plant families 
[20]. In some plant species, indole accumulation and/or emis-
sion is restricted to floral tissues, which highlights its role in 
scent formation [21]. In several classes of insects, such as the 
grey-backed mining bee (Andrena vaga), hummingbird moth 
(Hyles lineata) and the housefly (Musca domestica), indole was 
reported to elicit substantial antennal responses, indicating that 
these species can detect and react to this signal when foraging 
and subsequently during pollination [22,23].

Indole is occasionally a constituent of floral scent bouquets in 
nocturnal, moth-pollinated plants [24,25]. For example, in a re-
production isolation experiment, Bischoff et al. (2014) showed 
that indole contributed to the promotion of hawkmoth visits 
to Ipomopsis flowers [26]. The author’s showed that, overall, 
hawkmoths preferred to visit I. tenuituba, which is light-pink 
and naturally emitting indole, regardless of the artificial addi-
tion of the metabolite. In the case of I. aggregate, which has red 
petals and does not emit indole, the hawkmoth visitation rate 
was increased when indole was added. Indole is also involved 
in the attraction of insects to the flowers of “sapromyiophilous” 
plants, which mimic carrion and dung odors to attract flies for 
pollination services. These plants typically do not produce nec-
tar and rely heavily on sensory cues to ensure pollination [27]. 
Flowers of such plants (e.g. Periploca laevigata, Stemona spe-
cies and Satyrium pumilum) usually emit a blend of sweet and 
putrid volatiles that are associated with both ovipositional/mat-
ing sites and potential food sources [23,28,29]. Indole, being 
present in animal waste (Cosse and Baker, 1996) and carrions, is 
regarded as a signal leading the insects to the aforementioned, 
sites as well as to the flowers of dung and carrion-mimicking 
plants [22,25].

Indole is emitted as asignal for herbivore damage

In response to mechanical and herbivore damage, plants re-
lease a specific blend of volatile compounds. These volatiles can 
affect herbivores in different manners by: i) attracting natural 
enemies that feed on herbivores (i.e., predators and parasitic 
wasps) to locate their prey or host [31], ii) signalling to other 
herbivores that the plant has initiated the production of deter-
rent compounds; iii) signalling that herbivores are already pres-
ent on the plant and its nutritional value is reduced, therefore 
helping to reduce additional herbivore damage [32], and iv) 
function as anaerial priming agent to non-attacked neighboring 
plants, which will allow them to induce their defense mecha-
nisms  in preparation for future attacks [33]. An example of 
aerial priming was recently reported by Erb et al (2015). This 
research revealed that herbivore-infested maize leaves emit in-
dole to enhance the induction of defensive mechanisms in sys-
temic leaves and neighboring maize plants in a species-specific 
manner. Indole emission increased the biosynthesis of mono 
and homo-terpenes in the systemic leaves of attacked plants 
as well as the production of the stress phytohormones, such as 
jasmonic acid conjugate and abscisic acid in neighboring plants 
[33].

Indole serves as a precursor for toxic metabolites against 
herbivores

In plants, Trp and its substrate indole, serve as precursors 
for various classes of toxic, deterrent metabolites that play a 
defensive role against insects and pathogen by interfering with 
their life cycle [2,34,35], as depicted in Figure 3. These classes 
of metabolites differ between monocots and dicots and among 
the plant species in each group. In monocots, for example, the 
two millet species, foxtail millet (Setaria italica) and Japanese 
barnyard millet (Echinochloa esculenta), as well as rice plants 
(Oryza sativa) accumulate serotonin in response to pathogen 
or herbivore infestations [37,38]. For example, rice leaves were 
fed on by rice striped stem borer (Chilo suppressalis) larvae for 
either 24 h or 48 h which induced of four Trp-derived metabo-
lites including serotonin, tryptamine, feruloyl tryptamine (Fer-
Try) and p-coumaroylserotonin [38]. High concentrations of 
tryptamine in Catharanthus roseus plants have also been shown 
to express anti-oviposition activity toward whiteflies (Bemisia 
tabaci; [39]) and anti-feeding activities in tobacco and poplar 
toward Malacosoma disstria and Manduca sexta caterpillars 
[40]. Other monocots such as maize, wheat (Triticum genus), 
rye (Secale cereale), and wild barley (Hordeum genus) produce 
benzoxazinoids [11,41-43] while the cultivated barley species 
(Hordeum vulgare) produces gramine, an indolic defense com-
pound, against aphids and pathogens [44,45]. Benzoxazinoids 
were shown to cause negative effects against awide range of 
pests, including insects (aphids andcaterpillars), bacteria, fungi 
and nematodes [13,46-48,50-52]. The mode of action of these 
specialized metabolites is to deter insects by antibiosis proper-
ties caused by inhibition the digestive proteases responsible for 
detoxification and pest salivation and therefore, to affect the 
insect’s fitness [53]. For example, feeding experiments of cereal 
aphids on an artificial diet containing benzoxazinoid conjugates 
showed increased aphid mortality which supports a toxic func-
tion for these metabolites [48,52].

Dicot plants that belong to the Brassicaceae family, produce 
one or more indole glucosinolates which are among the most 
widely distributed glucosinolates in nature [54]. Glucosino-
latesremain compartmentalized and come in contact with 
the pest only upon tissue damage, followed by myrosinases 
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(β-thioglucoside glucohydrolase) activity and release of defen-
sive hydrolysis products including isothiocyantes, nitriles, and 
epithionitriles which are toxic compounds [55,56]. The glu-
cosinolates levels increase and their composition can change 
in response to herbivory and pathogen attack in several Brassi-
caceae species [57,58]. For example, a defensive role for indole 
glucosinolates was observed in the case of the A. thaliana atr1D 
mutant plant, which over produces indole glucosinolates. This 
in turn confers resistance to Brassicaceae-generalist herbivore, 
Myzus persicae aphids. Conversely, the Arabidopsis cyp79B2/
cyp79B3 double mutant, which possess low levels of indole 
glucosinolates, responded to M. persicae more rapidly [59,60]. 
Interestingly, the cyp79B2/cyp79B3 double mutant was tested 
for Brassicaceae-specialist herbivores, Pieris rapae, oviposition 
and received fewer P. repae eggs than the wild-type [61]. It 
was suggested that the role of indole glucosinolates and their 
breakdown products in plant-herbivore interactions, remains 
complex due to their differential influence on generalist and 
specialist herbivores [62].

Perspective

Indole is an essential metabolite that often determines the 
outcome of plant and insect interaction. On the one hand, in-
dole is involved in positive plant-insect interactions by serving 
as part of the volatile signals emitted by plants to attract their 
pollinators. On the other hand, indole is involved in negative 
plant-insect interaction by serving as a substrate for several 
classes of specialized metabolites that are function in repel-
ling herbivores. Therefore, we suggest that further study the 
biosynthesis and catabolism of indole under insect infestations 
should be further studied. Additionally, it would be prudent to 
explore the indole flux during visits of co-occurring insects from 
different guilds at different plant developmental stages.
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Figure 1: An overview ofindole biosynthesis (grey box), several major classes of specialized metabolites (orange box) and 
phytohormones biosynthesis (blue box).

Figure 2: Schematic representation of indole and Trp biosynthesis. In blue are the enzymatic reactions. 

Figures
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Figure 3: A summary of the major functions of indole and indole-derived metabolites. In blue are the func-
tions of indole and indole-derived volatile metabolites, in red are the classes of non-volatile deterrent metabo-
lites; in green are the indication of the roles of indole and Trp in plant growth and development.
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