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Abstract

Lipid Nanoparticles (LNPs), which consist mainly of cat-
ionic lipids, are considered a promising gene delivery tool 
for gene therapy with advantages such as ease of manufac-
turing and reduced toxicity. Human Peripheral Blood Mono-
nuclear Cells (hPBMCs) are an important raw material for 
gene therapy and there is a need to develop tools for ef-
fectively delivering genes to them. LNPs are expected to be 
a suitable delivery tool for this purpose. LNPs are unique 
in that their membrane structure can be flexibly changed 
according to the target cell by changing their lipid ratio. To 
maximize the efficiency of gene delivery to hPBMCs, we ap-
plied a Bayesian Optimization (BO) method to design an LNP 
composed of the newly synthesized cationic lipids FFT-10 
and FFT-20. BO can predict the optimum value from a small 
number of trials and is also useful for multifactor optimiza-
tion. Consequently, we found a lipid composition that was 
260-fold more efficient than the initial composition by using 
BO combined with experimental trials. In conclusion, BO can 
provide beneficial results for constructing the lipid composi-
tion of LNPs for target cells in order to expand the clinical 
application. It is thus important to design LNPs that offer 
highly efficient gene delivery to hPBMCs.Keywords: Gene delivery; Lipid nanoparticles; Lipid composi-

tion; Human peripheral blood mononuclear cells; Bayesian op-
timization.
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Introduction

Gene therapy is a promising treatment for diverse genetic 
diseases such as cancer, hemophilia, and neurodegenerative 
diseases [1-4]. Gene therapy is based on the delivery of exog-
enous genes into pathological cells to modify the expression of 
some particular genes to treat or prevent a disease. Therefore, 
the successful clinical application of gene therapy depends on 
establishing a highly efficient gene delivery system to pathologi-
cal cells.

Over the past few decades, many gene delivery systems 
have been developed, and virus-based delivery systems have 
been widely used in clinical applications. It was reported that 
virus-based delivery systems were used in about 70% of gene 
therapy clinical trials in 2017 [5]. Although virus-based delivery 
systems have high gene delivery efficiency, they are known to 
be highly immunogenic and thus present safety concerns [6]. 
Therefore, the development of an effective and safe non-viral 
gene delivery system for gene therapy remains a problem to be 
addressed.

Since the first clinical application of a non-viral gene delivery 
system using cationic lipids [7], progress has continued with the 
application of lipid nanoparticles (LNPs), which offer advantag-
es such as safety, low-cytotoxicity, and stability. LNPs are usually 
made from cationic lipids, structural lipids, cholesterol, and PEG 
lipids [8]. In particular, many cationic lipids are newly designed 
by changing the polarity of the polar head and the carbon num-
ber and degree of unsaturation of the fatty acid tail, and this has 
been reported to affect the gene delivery efficiency [9-11]. In 
addition, recent studies have shown that the lipid composition 
of LNPs change the structure and pKa of LNPs, which affects the 
gene delivery efficiency to diverse cells [9].

To design the lipid composition of LNPs to maximize the 
gene delivery efficiency to target cells, it is necessary to opti-
mize the kinds and molecular ratios of the lipids. In this work, 
we report that a combination approach consisting of biological 
experiments and machine learning is effective for customizing 
the lipid composition of LNPs.

Bayesian Optimization (BO), which is a machine learning 
technique, makes it possible to determine the optimum com-
position despite limited materials information and limited 
numbers of trials [12,13]. BO recommends not only points of 
high expectation but also points of high uncertainty as search 
candidates by using an objective function (acquisition function) 
that considers both exploration and exploitation based on the 
surrogate model obtained by learning the experimental results 
[12,14]. Recently, the effects of BO have been demonstrated in 
production process optimization and material design in which 
many factors are complexly correlated [15-18]. For example, it 
was reported that BO was effective in a hybrid organic–inorgan-
ic perovskite design that optimizes the perovskite structure of 
solar cells [19]. Similar to the multicomponent optimization of 
inorganic material, we examined the lipid composition of LNPs 
that maximized the efficiency of gene delivery to target cells by 
using BO.

Human Peripheral Blood Mononuclear Cells (hPBMCs) are 
a mixture of various immune cells separated from peripheral 
blood and are used for preclinical assays, including natural killer 
cytotoxicity assays, leukocyte recruitment, adhesive interac-
tions with endothelial cells, suppression assays, and lympho-
cyte proliferation assays [20]. hPBMCs are also very important 

as starting material for gene therapy, including T-Cell Receptor 
T-Cell Therapy (TCR-T) and Chimeric Antigen Receptor T-Cell 
Therapy (CAR-T) [21]. Viral vectors are commonly used for T-cell 
gene therapy because of their high gene delivery efficiency [22], 
but there is a risk of high immunogenicity. Therefore, the appli-
cation of non-viral gene delivery systems such as LNPs to T-cell 
gene therapy may contribute to improving the safety of T-cell 
gene therapy. Billingsley et al. reported on using LNPs to deliver 
genes into hPBMCs, but the gene expression level was not suf-
ficient for gene therapy [23]. LNPs need to be designed to allow 
the gene to reach hPBMCs and be sufficiently expressed.

In this study, we used a method involving BO in order to de-
sign a more effective lipid composition for LNPs to deliver genes 
to hPBMCs.

Materials and methods

Lipids

The functional lipids FFT-10 and FFT-20 were synthesized as 
described in the supplementary material (Figure S-1 and Figure 
S-3). DOPE (1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine) 
and DOTAP (1, 2-dioleoyl-3-trimethylammonium-propane chlo-
ride salt) were purchased from Avanti Polar Lipids, Inc (USA). 
Cholesterol was purchased from Sigma-Aldrich (USA). DMG-
PEG 2000 (1, 2-dimyristoyl-rac-glycero-3-methylpolyoxyethyl-
ene) was purchased from NOF Corporation (Japan).

Plasmid DNA

To construct pCMV-nLuc plasmid encoding NanoLuc, Nano-
Luc sequence from pNL1.1 (Promega, USA) was subcloned into 
pcDNA4/V5-His B (Thermo Fisher Scientific, USA) digested with 
Hind III and Xba I restriction endonucleases (Takara Bio, Japan).

Peptides

The mHP-1 peptide (RQRQRYYRQRQRGGRRRRRR) and the 
mHP-2 peptide (RRRRRRYYRQRQRGGRRRRRR) were chemically 
synthesized (Polypeptide, USA).

Cell culture

Human Peripheral Blood Mononuclear Cells (hPBMCs, Lon-
za, Switzerland) were maintained in TexMACS medium (Miltenyi 
Biotec, Germany) containing deoxyribonuclease I (Worthington, 
USA), human interleukin-7 (IL-7, Miltenyi Biotec, Germany) and 
human interleukin-15 (IL-15, Miltenyi Biotec, Germany), and 
cultured in an incubator at 37 °C with 5% CO2. The cells were 
activated by CD3 antibody (Miltenyi Biotec, Germany) and CD28 
antibody (Miltenyi Biotec, Germany). At 24 h after activation, 
the cells were prepared for transfection by LNPs.

Preparation of lipid nanoparticles (LNPs)

pDNA and peptide solutions (0.255 mg/ml and 0.15 mg/ml) 
were prepared in 10 mM HEPES (pH 7.3, Dojindo, Japan). DNA 
particles were prepared by dropping the pDNA solution into 
the peptide solution under vortexing. Lipids were dissolved in 
a solution of ethanol and mixed DNA particles under vortexing. 
The solution was further diluted by adding 10-fold amount of 10 
mM HEPES (pH 7.3). The diluted solution was concentrated by 
ultrafiltration using Amicon Ultra 0.5 Ultracel-50 50 kDa (Merck, 
Germany).

Measurement of particle size and zeta potential

The particle size and zeta potential of the LNPs were mea-
sured using a Zetasizer Nano ZSP (Malvern, UK). The measure-
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Figure 1: Chemical structure of (A) FFT-10 and (B) FFT-20.

ment data were analyzed by the software supplied with the 
device.

Low-voltage transmission electron microscopy 

To observe the structure of the LNPs, we applied the LNP 
solution to a grid without staining and observed it by a low-
voltage transmission electron microscopy (LV-TEM) (LVEM5D; 
Delong Instruments, Czech Republic) at 5 kV.

Gene delivery to hPBMCs

The plasmid DNA was delivered to hPBMCs by using LNPs 
or Lipofectamine 3000 (Thermo Fisher Scientific, USA). The day 
before transfection, hPBMCs were seeded in 96-well plates at 
4.0 × 105 cells/well and activated with CD3 and CD28 antibod-
ies. LNPs or transfection reagents were added to hPBMCs so 
that the amount of plasmid DNA was 0.5 μg/well. Transfected 
hPBMCs were cultured in an incubator at 37 °C with 5% CO2 for 
48 h.

Luciferase assay

The expression intensity of plasmid DNA (pCMV-nLuc) deliv-
ered to hPBMCs by LNPs or Lipofectamine 3000 (Thermo Fisher 
Scientific, USA) was measured using Nano-Glo Luciferase Assay 
(Promega, USA) and a plate reader (infinite F200 PRO; Tecan, 
Switzerland) according to the manufacturer’s instructions.

Measurement of cell viability

To compare the cytotoxicity of LNPs or lipofection reagent, 
the cell viability of transfected hPBMCs was measured by try-
pan blue staining. After mixing the cell suspension with an 
equal amount of trypan blue stain solution, the number of via-
ble cells was measured by an automated cell counter (Countess 
II FL; Thermo Fisher Scientific, USA). The relative cell viability of 
transfected hPBMCs was calculated such that the number of vi-
able cells of untransfected hPBMCs was 100%.

Normalization

Luciferase activity and cell viability of hPBMCs were nor-
malized to those of the control LNP. The lipid composition of 
the control LNP had a molecular ratio of FFT-10, FFT-20, DOPE, 
DOTAP, cholesterol, and DMG-PEG was 32%, 0%, 5%, 9%, 51%, 

and 3%, respectively. The measurement results of each sample 
were normalized based on cell viability and luciferase activity of 
hPBMCs transfected with the control LNP.

Statistics

All values are presented as means ± standard deviation (SD). 
All experiments were replicated at least three times. Data were 
analyzed using the Tukey–Kramer test with the Excel software 
package.

Results & discussion

Previous structure-activity relationship studies have shown 
that to promote formulation of LNPs, the lipids need to have an 
amphipathic structure with a hydrophilic head group containing 
ionizable amine and long hydrophobic dialkyl chains. The ioniz-
able amine plays an important role in escaping the endosomal 
compartment following endocytosis uptake of LNPs into cells 
[24-26]. Tertiary amines have been reported to have a relatively 
strong proton sponge effect within ionizable amine [27,28]. We 
therefore designed new functional amino lipids (FFT-10 and 
FFT-20) having a hydrophilic head group containing two tertiary 
amines. Figure 1 shows the structures of FFT-10 and FFT-20.

Table 1: Molecular ratio of the lipid composition and the luciferase activity of LNP-1, LNP-2, LNP-3, and Lipofectamine 3000.

Molecular ratio of the lipid composition (% mol) Luciferase activity
(RLU/well)FFT-10 FFT-20 DOPE DOTAP Cholesterol DMG-PEG

LNP-1 0 0 28 28 41 3 146 ± 63

LNP-2 33 0 19 19 27 2 3536 ± 93*

LNP-3 0 33 19 19 27 2 6147 ± 810*

Lipofectamine 3000 224 ± 44

We prepared three LNPs encapsulating the plasmid DNA 
(pCMV-nLuc). The lipid compositions of these LNPs are shown 
in Table 1. Using these LNPs or Lipofectamine 3000, the plas-
mid DNA (pCMV-nLuc) was delivered to the hPBMCs, and we 
compared the luciferase activity of the cells in terms of gene 
delivery efficiency. As shown in Table 1, LNP-2 and LNP-3, which 
were composed of our new lipids (FFT-10 and FFT-20), had high-

er luciferase activity compared with LNP-1 and Lipofectamine 
3000. We subsequently prepared LNPs containing both FFT-10 
and FFT-20 and measured the luciferase activity of the cells 
(Table 2). Comparing the luciferase activities of LNP-4, LNP-5, 
and LNP-6, small variations in the molecular ratio of the lipid 
composition were found to affect the gene delivery efficiency.

Data are means ± SD (n=3). Statistically significant differences (*P < 0.05, Tukey-Kramer test).
*: in comparison with LNP-1 and Lipofectamine 3000
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Table 2: Molecular ratio of the lipid composition and the luciferase activity of LNP-4, LNP-5, and LNP-6.

Data are means ± SD (n=3). Statistically significant differences (*P < 0.05, Tukey-Kramer test).
*: in comparison with LNP-4 and LNP-5

This result shows that it is necessary to optimize the lipid 
composition and molecular ratio in parallel for target cells in 
order to maximize the gene delivery efficiency of LNPs.

BO is a machine learning technique that has been reported 
to be effective in production process optimization and material 

Molecular ratio of the lipid composition (% mol) Luciferase activity
(RLU/well)FFT-10 FFT-20 DOPE DOTAP Cholesterol DMG-PEG

LNP-4 25 15 19 6 32 3 146481 ± 29542

LNP-5 24 14 21 8 31 2 118950 ± 24839

LNP-6 22 15 21 8 32 2 288243 ± 55693*

design, which has many are complexly correlated factors [14-
17]. We therefore attempted to apply BO to the identification 
of the optimum lipid composition and molecular ratio of LNPs. 
The process was performed as follows (Figure 2):

Figure 2: Process of lipid composition design using Bayesian optimization.The five steps are (1) creating 
the initial dataset; (2) constructing the surrogate model; (3) selecting the next lipid composition; (4) measur-
ing the output value; and (5) checking the output value. These steps are repeated until the output value is 
achieved.

Step 1: Creation of the initial dataset

We set the search range for the lipid composition such that 
FFT-10 was from 0 to 74 nmol, FFT-20 was from 0 to 74 nmol, 
DOPE was 0 to 42 nmol, DOTAP was 0 to 42 nmol, cholesterol of 
0 to 90 nmol, and DMG-PEG was 0 to 6 nmol. We designed 70 
different molecular ratios of the lipid composition (X) based on 
the experimental design (Supplementary Table S1, Nos. 1-70). 
LNPs were prepared using these 70 molecular ratios, and the 
luciferase activity and cell viability of hPBMCs transfected with 
each LNP were measured. The output value (Y) was calculated 
by multiplying the logarithm of the luciferase activity with the 
cell viability of hPBMCs.

Step 2: Construction of the surrogate model of the output 
value (Y) using the dataset

Based on the dataset { } 1
( , ) n

i i i
x y

=
 consisting of the molecu-

lar ratio of lipid composition (X) and the output value (Y), a sur-
rogate model  { } 1

( | , ( , ) )n
i i i

P Y X x y
=

 that gives a probability 
distribution of the output value Y was constructed by Gaussian 
process regression using an exponential kernel.

Step 3: Selection of the next molecular ratio of lipid com-
position (Xnext)

The acquisition function 𝛼 𝑥  was calculated based on the 
surrogate model constructed in Step 2, and the molecular ratio 
of the lipid composition (Xnext) that maximized the acquisition 
function was selected. We used expected improvement as the 
acquisition function.

Step 4: Measurement of the output value (Ynext)

We prepared LNPs with the molecular ratio for lipid composi-
tion (Xnext) selected in Step 3, and measured the luciferase activ-
ity and cell viability of hPBMCs transfected with those LNPs. The 
output value (Ynext) was calculated in the same way as in Step 1.

Step 5: Updating the dataset and repeating Steps 2 to 4

The surrogate model was updated using the dataset contain-
ing the additional data from Step 4, and the new molecular ratio 
of the lipid composition that maximized the acquisition func-
tion was selected. We examined the optimum lipid composition 
for hPBMCs by repeating Steps 2 to 4 (Supplementary Table S1, 
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Nos. 71–102).

Figure 3: BO solution space visualized by projecting the six-
dimensional lipid composition onto a two-dimensional space. (A) 
Distribution of LNPs based on the experimental order of BO. (B) 
Distribution of LNPs based on the output value Y.

Figure 3 shows the scheme for exploring the lipid composi-
tion using BO. The BO solution space was visualized by project-
ing the six-dimensional lipid composition onto a two-dimen-
sional space. Dimension reduction was performed using the 
t-SNE algorithm [29]. Figure 3-A shows the BO trial order on a 
heat map, which progresses toward the lower left. Figure 3-B 
shows the output value Y of each LNP as a heat map projected 
onto the same two-dimensional space. From the result that a 
lipid composition with a higher Y value was proposed after the 
learning progressed, it was considered that the lipid composi-
tion selected by BO was performed correctly. The BO method 
selected the same composition as Nos. 70 and 84, in which the 
molecular ratio of FFT-10, FFT-20, DOPE, DOTAP, cholesterol, 
and DMG-PEG (16%, 16%, 18%, 9%, 39%, and 2%, respectively) 
was thought to be optimal for gene delivery to hPBMCs. To con-
firm the gene delivery efficiency of this composition, we pre-
pared LNP-7 encapsulating the plasmid DNA (pCMV-nLuc) and 
compared the luciferase activity with LNP-7 with that with LNP-
2 and LNP-3, as shown in Table 3.

Table 3: Molecular ratio of the lipid composition, and the particle size, zeta potential, and luciferase activity of LNP-2, LNP-3, and LNP-7.

Molecular ratio of the lipid composition (% mol) Particle size 
(d.nm)

Zeta potential (mV) Luciferase activity (RLU/well)
FFT-10 FFT-20 DOPE DOTAP Cholesterol DMG-PEG

LNP-2 33 0 19 19 27 2 152.5 ± 1.4 49.7 ± 2.9 4078 ± 201

LNP-3 0 33 19 19 27 2 165.4 ± 0.2 58.2 ± 2.8 6797 ± 750

LNP-7 16 16 18 9 39 2 201.0 ± 1.0 52.0 ± 1.6 1790531 ± 62502*

The luciferase activity with LNP-7 was 430 times that of LNP-
2 and 260-fold that of LNP-3. Since LNP-7 can be considered 
to be the optimal lipid composition for delivering the gene to 
hPBMCs, the selection method in combination with BO is con-
sidered to be appropriate for optimization of multiple composi-
tions.

To analyze correlations between the structures and gene 
delivery efficiencies of the LNPs, the LNPs were observed by 
LV-TEM (5 kV) without staining. LV-TEM is an effective imaging 
tool for biological materials. The improved contrast of LV-TEM 
eliminates heavy metal negative stains that can cause imaging 
artifacts in samples containing light elements such as LNPs. By 
using LV-TEM, we considered that it would be possible to ob-
serve the structure of LNPs that are close to the negative state.

Figure 4: Structure of LNPs observed by low voltage (5 kV) transmission electron mi-
croscopy. (A) Structure of LNP-2. Black arrows indicate layers with a relatively high electron 
density. White arrows indicate indistinct layers of the outermost layer. (B) Structure of LNP-3. 
Black arrows indicate high-electron-density cores. White arrows indicate low-electron-den-
sity layers. (C) Structure of LNP-7. Black arrows indicate a high-electron-density cores. White 
arrows indicate low-electron-density layers.

Data are means ± SD (n=3). Statistically significant differences (*P < 0.05, Tukey-Kramer test).
*: in comparison with LNP-2 and LNP-3
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As shown in Figure 4-A, LNP-2 consisted of a white low-elec-
tron-density core surrounded by a layer with a relatively high 
electron density (black arrows), and an indistinct layer (white 
arrows) was observed in the outermost layer. By comparison, 
LNP-3 (Figure 4-B) and LNP-7 (Figure 4-C) had a relatively clear 
structure with a core having a high electron density (black ar-
rows) covered by a low-electron-density layer (white arrows). 
In addition, it was observed that the outer layer of LNP-7 had a 
clearer edge than that of LNP-3. It was considered that the layer 
with the high electron density contains mainly plasmid DNA, 
and the layer with the low electron density contains mainly lip-
ids [30]. It is possible that differences in the outermost struc-
ture that is in contact with the cells affects the gene delivery 
efficiency of LNPs [31].

Conclusion

It is thought that in LNPs containing multiple lipids, not only 
the individual lipids but also the interactions between lipids, af-
fected the gene delivery efficiency of LNPs based on their struc-
tures. The BO method that was used in this study was useful in 
this case where multiple components mutually influence each 
other because it is a so-called “black box optimization method”. 
Although a function that associates the molecular ratio of lipid 
composition with the gene delivery efficiency was not elucidat-
ed, the maximum value was nevertheless predicted. The meth-
od used in this study that combines experimental methods with 
BO was effective for the construction of the lipid composition 
for LNPs for target cells.

We designed an optimal lipid composition for LNPs for gene 
delivery to hPBMCs. The BO framework we presented in this 
paper was suitable and effective for application to the design 
of multicomponent LNPs. Application of this method to the de-
sign of clinically usable LNPs requires improving the accuracy 
of machine learning and accumulating more examples of cell 
applications.
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