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Abstract

Metal nanoparticles (NPs) have the highest effectiveness 
among the most innovative nanotechnological applications 
due to their special action modes. For instance, Ag+ ions are 
broad-spectrum antibacterial agents with the capacity of ef-
fective inhibition of the growth of fungi, algae, and bacteria. 
Nanoscale silver particles with a large surface-area-to-vol-
ume ratio (size below 100 nm) are significantly interesting 
because of their great antimicrobial actions against viruses, 
Gram-negative and Gram-positive bacteria.

Many in vitro research works have been conducted de-
scribing the antimicrobial activities of plant-mediated AgNPs 
against oral pathogens. During NP green synthesis process, 
not only the metal salts are reduced by biological mole-
cules, but also they coat the produced NPs or act as in situ 
capping and reducing agent. It has been proved that silver 
NP is a promising compound that can be employed in den-
tistry because some researchers have used the strategy of 
incorporating antimicrobial substances in dental biomateri-
als. Hence, green process developed AgNPs can be a promis-
ing approach for producing antimicrobial agents against oral 
pathogens. Thus, in this review, recent researches regarding 
merits of various plant-mediated approaches for the synthe-
sis of silver nanoparticles over traditional methods were col-
lected. Then recent applications in various fields of dentistry 
were presented.
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Introduction

Antibacterial resistance is currently a common problem, 
which is regarded as one of the globally complicated challenges 
in the health area. Discovering and synthesizing new biomedi-
cines or finding natural alternatives is a demanding needs since 
it a significant priority that is highly requested in the current sit-
uation. Community and hospital-acquired infections are gener-
ated mostly by multidrug-resistant bacteria and these infections 
have become the most challenging condition in the world[1]. 
Besides, these multidrug-resistant bacterial pathogens have 
considerably increased the death rate. There are various re-
search works suggesting the development of new multidrug 
bacterial resistance genes as a result of the inappropriate and 
immense use of antibiotics [1]. Therefore, discovering and de-
veloping new warfare plans is crucial for fighting against multi-
drug-resistant bacteria and reducing the widespread consump-
tion of antibiotics for the treatment of microbial infections. 

Generally, antibacterial materials are classified into three 
groups: organic, inorganic, and natural materials. There is low 
heat resistance in organic antibacterial materials that probably 
create bacterial drug resistance, while the range of application 
of natural antibacterial materials is limited. Inorganic antibac-
terial materials show better performance compared to organic 
antibacterial materials in terms of antibiotic resistance develop-
ment in bacterial strains, heat resistance, and durability. Thus, 
recently, they have drawn considerable interest [2]. 

As a result of advanced research in nanotechnology, nano-
scale objects have been developed with salient antimicrobial 
actions against multidrug-resistant pathogens, which suggest a 
platform for fighting against bacterial mutation arch [3,4]. Met-
al nanoparticles (NPs) have the highest effectiveness among the 
most innovative nanotechnological applications due to their 
special action modes [5]. Given that essential metals have mi-
crocidal lethal impacts (crucial for the life biochemistry in all 
organism fulling cellular functions) in excessive dose, and also 
effects of nonessential metals, even at small doses, tradition-
ally it has been proved that using metals as antimicrobial agents 
is scientifically justified in this regard [6-8]. In some cases that 
there is tight bonding between metal ion and antibiotic struc-
ture (for example, bleomycin, bacitracin, albomycin, and strep-
tonigrin), which manages the biocidal action [9]. In this case, 
they attach to the antibiotic molecule (for example, aureolic ac-
ids, quinolones, and tetracyclines) and no critical change is cre-
ated in antibiotic structure while the activity is enhanced [10]. 
Considering the microcidal nature, the synthesis of metal NPs 
highly attracts nanotechnologists and researchers.

For instance, Ag+ ions are broad-spectrum antibacterial 
agents with the capacity of effective inhibition of the growth 
of fungi, algae, and bacteria [11]. IT has been shown that many 
inorganic NPs cause severe cytotoxicity, proving that it is possi-
ble to develop a novel generation of bactericidal materials [12]. 
Specifically, researchers have investigated silver NPs for their 
notable antibacterial action and creating the least damage to 
human cells [13]. As an example, effective antibacterial action 
has been observed in silver NP-coated silicon nanowires [14]. 

Nanoscale silver particles with a large surface-area-to-vol-
ume ratio (size below 100 nm) are significantly interesting be-
cause of their great antimicrobial actions against viruses, Gram-
negative and Gram-positive bacteria [15,16] , as well as other 
eukaryotic microorganisms [17], in comparison with other na-
no-metals. Also, it indicates potential effects of these particles 

against multidrug-resistant and multidrug susceptible strains, 
like Pseudomonas aeruginosa, ampicillin-resistant Escherichia 
coli, vancomycin-resistant Staphylococcus aureus (VRSA), eryth-
romycin-resistant Streptococcus pyogenes, and methicillin-re-
sistant Staphylococcus aureus (MRSA). Because of their biocidal 
actions, various chemical and physical routes have been used 
for the synthesis of AgNPs. Moreover, it has been attempted 
to apply AgNPs to surface modification, fiber-grafting, coating, 
preparation of gels, etc. [18-21]. However, the drawbacks in-
clude use of toxic solvents (e.g., polyvinyl pyrrolidone, sodium 
dodecyl benzyl sulphate), use of toxic forerunner chemicals 
(e.g., potassium bitartrate, sodium borohydride, hydrazine, 
methoxy-polyethylene-glycol), and the emergence of toxic by-
products through traditional roots (chemical and physical ap-
proaches) of silver NP synthesis. With scientific improvements, 
alternative environment-friendly routes were found for synthe-
sizing metal NPs. There are a large number of works [22,23] fo-
cusing on the mechanisms and antibacterial performance of Ag-
NPs. Counterparts [24] . Various studies have been carried out 
for indicating the impact of Ag-NPs shapes on their antibacterial 
activities. The number and status of surface plasmon resonance 
(SPR) peaks are subject to the Ag-NPs shape. For instance, a sin-
gle scattering peak is presented by spherical particles. On the 
contrary, multiple scattering peaks are presented by anisotro-
pic shapes, like triangular prisms, cubes, and rods, in the visible 
wavelengths since they have very localized charge polarizations 
at edges and corners [25,26]. Thus, it is challenging to achieve 
a size-tunable synthesis of Ag-NPs with extensive surface area 
and surface activity and poor stability, and a high aggregation 
capability [27,28]. Hence, researchers have discovered many 
forms of Ag-incorporated NPs, and it has been found that Ag-
NPs immobilized on different organic and inorganic substrates 
increase and extend antibacterial properties [29].

Green synthesis of Ag NPs

Synthesis of AgNPs was achieved by biological extract in situ 
that reduced silver salts (Ag+) to metallic silver, Ag(0). During 
NP green synthesis process, not only the metal salts are re-
duced by biological molecules, but also they coat the produced 
NPs or act as in situ capping and reducing agent. Such capping 
is beneficial since it works multifunctionally; (i) preventing the 
NPs agglomeration, (ii) reducing the toxicity, [30,31] and (iii) en-
hancing antimicrobial action [32-35]. A synergistic impact of the 
capped bio molecules and metal NPs can be shown in case that 
these coating agents present antimicrobial action. Here AgNPs 
present action for their size and bio molecule over NP surface 
for its antimicrobial action. In many cases, it is the probable rea-
son for the low antimicrobial action of NPs that are biologically 
synthesized. Therefore, for the green synthesis of silver NPs, the 
focus of the research is on synthesis of AgNPs by the use of bio 
molecules that have antimicrobial actions. In the past ten years, 
widespread studies have been conducted on biosynthesized Ag-
NPs [36].

Ag-NPs have had antimicrobial applications because of their 
antimicrobial properties. As a result of such special properties 
of silver NPs, they can be easily used in such areas as pharmacy, 
nanomedicine, biomedical engineering, and biosensing. As dis-
covered by Mittal, synthesis of metallic NPs with plant extracts 
was economical and eco-friendly, supporting different analyti-
cal approaches [37]. Besides the benefits, it should be acknowl-
edged that there are also some problems related to the green 
synthesis of Ag NPs. The limited number of shape sizes and slow 
synthesis rate of NPs are among the main disadvantages of ap-
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plying plant extracts for the synthesis of Ag NPs, and in com-
parison with conventional approaches, a low yield of secreted 
proteins is produced by plants. It is not possible to manipulate 
plants because of the choice of NPs either through genetic en-
gineering or through optimized synthesis [38]. Various studies 
have published antimicrobial, antiviral, anti-rheumatic, bacteri-
al, expectorant, diuretic, insecticide, and hypertensive activities 
for many natural products. Synthesis of biogenic NPs by the use 
of plant extracts with the aim of antimicrobial potency can have 
synergistic effects on organisms [39]. That is, varying by the ease 
of processing and productivity for being automatically safe with 
such a single-phase approach for large-scale NP synthesis, the 
biological synthesis of silver NPs could have many auspicious 
dimensions. The number of studies overviewing Ag-NP antibac-
terial activity and its biosynthesis is limited. The surface mor-
phology, shape, and size of Ag-NPs are significant factors that 
determine their properties. There is a link between the antibac-
terial activity of Ag-NPs and the release and oxidation of Ag+ 
ions into the environment. Thus, it is regarded a significant anti-
bacterial agent [40]. It is projected that Ag-NPs have a high frac-
tion of surface atoms and a large surface area to volume ratio in 
comparison with pure silver metal, resulting in great antibacte-
rial activity [41]. Besides, as a result of the small size of Ag-NPs, 
the diffusion in the cell membrane is easier and the bacterial 
cell’s intercellular processes are altered. Green-synthesized Ag 
NPs are mostly studied for cancer therapy or their antibacte-
rial characteristics. Studies in recent years have demonstrated 
that it is possible to synthesize Ag-NPs with 17-29 and 38-72 
nm diameter ranges using Chrysanthemum Indicum or Acacia 
Leucophloea extract [42,43]. These samples both have shown 
noticeable antibacterial effects. In a similar way, Ag- -NPs were 
synthesized using Ganoderma Neojaponicum Imazeki that can 
be employed as chemotherapeutics against breast cancer cells 

[44].

Ag-NPs have been generated by green synthesis using vari-
ous biological sources, such as algae, fungi, and plants (Figure 
1).

Figure 1: Schematic representation of the procedure for green 
synthesis of silver nanoparticles using various biological entities.

sis of MNPs using chemical and physical techniques, it has been 
attempted to develop cheaper and greener techniques for the 
MNPs synthesis. The MNPs have a more eco-friendly and cost-
effective and biosynthesis in comparison with the physical and 
chemical techniques. In green synthesis approaches, first, natu-
ral compounds are extracted from plants or microorganisms, 
and then these extracts are used for the in vitro synthesis of 
the MNPs. The materials produced by plant extracts utilize one-
step synthesis, are rapid, and do not necessitate complicated 
purification approaches [47]. Synthesis of MNP with the media-
tion of plant extracts is more cost-effective since plant extracts 
can be prepared readily and it is possible to use extracts from 
different materials of plants, like roots, leaves, stems, flowers, 
barks, fruits, vegetables, etc. in the synthesis [48,49]. Further-
more, plant-derived waste, including fruit peels, can be utilized 
for synthesis of MNPs. These plant materials are rich in second-
ary metabolites (amino acids, vitamins, enzymes, antioxidants, 
polysaccharides, proteins) and phytochemicals (for example, 
terpenoids, alkaloids, phenolic) acting as capping, stabilizing, 
and reducing agents within the MNPs synthesis, either individu-
ally or used together [50]. 

Green synthesis of Ag NPs using plant extracts

Plants have had widespread usage in contrast to microorgan-
isms because phytochemicals of plants have higher stabilization 
and reduction [51]. Using Eugenia jambolana leaf extract, AgNPs 
were synthesized, which showed the availability of flavonoids, 
alkaloids, sugar compounds, and saponins [52]. The presence 
of carboxyl and hydroxylamine groups was observed in bark ex-
tract of Saraca asoca [53]. AgNPs were synthesized by the use 
of leaves of Rhynchotechum ellipticum, and the availability of 
flavonoids, alkaloids, polyphenols, carbohydrates, steroids, and 
terpenoids was noted [54]. AgNPs of 20–40 nm diameters were 
formed using hesperidin [55] . It was found that phenolic com-
pounds of oleic acid and pyrogallol are crucial for reducing sil-
ver salt to for formation of NPs [56]. Pepper-leaf extract works 
as a capping and reducing agent in forming AgNPs of 5–60 nm 

[57]. Fruit extracts of Malus domestica functioned as a reducing 
agent. Besides, researchers have reported Vitis vinifera, 39 An-
dean blackberry [58], Solanum nigrum [59], Adansonia digitata 

[60], Nitraria schoberi [61], or various fruit peels for synthesis of 
AgNPs [62]. Also, previous studies have reported combinations 
of plant extracts [63]. Some other reductants that have been 
utilized for AgNO3 include soluble starch [64], polysaccharide 

[65], natural rubber [66], cinnamon, tarmac [67], 25 red apple 
[68], 25 stem-derived callus of green apple, egg white [69], cof-
fee [70], lemongrass [71], black tea [72], Abelmoschus esculen-
tus juice[73], Phyllanthus emblica [74], and Gracilaria birdiae 

[75] . In addition, Figure 3 indicates a general diagram that rep-
resents various parts of leaves of different plants, such as seed, 
peel, flower, fruit, root, bark, and stem, utilized in nano formu-
lations. Green synthesis is innocuous and cost-effective- [76-78].

Applications of green synthesized silver NPs in dentistry

Among metallic NPs, silver NPs (AgNP) are salient in scientific 
studies for offering biological activity and antimicrobial charac-
teristics against fungi, bacteria, as well as enveloped viruses. 
There is an association between mechanism of action of AgNPs 
and the cationic silver release and its oxidative capacity [79]. 
Also, the shape and size of particles can affect the action mech-
anism of AgNPs and their synthesis. Thus, it has been proved 
that silver NP is a promising compound that can be employed 
in dentistry because some researchers have used the strategy 
of incorporating antimicrobial substances in dental biomaterial 

However, the general method is an herbal-mediated fabrica-
tion of Ag-NPs. Different green plants extracts, e.g., stem bio 
resources, leaf extracts, etc. have been utilized by these studies. 
Metal NPs (MNPs) with varying shapes and sizes have been syn-
thesized using various methodologies. MNP synthesis is mainly 
realized by different chemical and physical approaches, includ-
ing lithography, laser ablation, sol-gel method, electro-deposi-
tion, and chemical vapor deposition. Nevertheless, these are 
costly approaches and it has been reported that the products 
produced from them could harm the environment and human 
beings. These approaches are described in detail elsewhere 

[45,46]. Considering concerns and challenges regarding synthe-
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[80,81]. The effectiveness of silver NPs against many multi-drug-
resistant microorganisms has been shown already [82,83]. Nev-
ertheless, the commercial application of silver NPs in dentistry 
is at early stages, and there are only three products that use Ag-
NPs in their structure and are currently commercially present-
ed: Novaron AG300 (Toagosei Co Ltd., Tokyo, Japan) [84], dental 
adhesive (NanoCare Gold DNT™) [83,85]., and sealer (Gutta-
Flow™ Coltène-Whaledent) [86,87].. Hence, the direct use of 
AgNP in dentistry aims at disinfecting and prophylactic action. 
According to research findings, the use of AgNPs in dentistry 
did not provide further clinical and commercial applications or 
the chemical discriminations of silver NPs and their therapeutic 
achievement. Thus, in this study, we analyzed the application 
of silver NPs in technological innovations and dentistry based 
on their development. Besides, it is attempted to elucidate dif-
ferences among the physical, chemical, and green synthesis of 
silver NPs, the NP types utilized in dentistry, and their action 
mechanisms against fungi and Gram-negative and Gram-posi-
tive bacteria. Plants are the most common organisms, which are 
used in dentistry for the synthesis of silver NPs [88-96]. Strength 
of this approach is increasing biocompatibility in living organ-
isms that is optimal for the application in the human and vet-
erinary health fields. The biosynthesized silver NP effectiveness 
is based on the metal core stabilization for biological polymers.

Similar to the chemically synthesized AgNPs, it is possible to 
use the green AgNPs individually or combined with other dental 
agents to gain better therapeutic outcomes. Hence, green pro-
cess developed AgNPs can be a promising approach for produc-
ing antimicrobial agents against oral pathogens. Many in vitro 
research works have been conducted describing the antimicro-
bial activities of plant-mediated AgNPs against oral pathogens. 
In AgNPs produced from the leaf extract of Justicia glauca, anti-
microbial activity alone and combined with Clarithromycin and 
Azithromycin has been observed against S. aureus, S. mutans, L. 
acidophilus, B. subtilis, Micrococcus luteus, E. coli, C. albicans, 
and P. aeruginosa. Also, these AgNPs have shown effectiveness 
against different microorganisms that are related to periodontal 
disease and dental caries, with values of MIC between 25–75 
µg/Ml [97]. Another research showed antibacterial activity of 
biogenic AgNPs generated from plant extracts of Ficus bengalen-
sis (F. bengalensis), Azadirachta indica (A. indica) and Salvadora 
persica (S. persica) against L. lactis, S. mutans, and L. acidophi-
lus. The S. persica AgNPs and A. indica showed higher effective-
ness against the oral pathogens compared to the F. bengalensis 
AgNPs [98]. It was indicated that Haliclona exigua-AgNPs have 
the potential of inhibition of biofilms on some microbes en-
gaged in forming oral biofilm, i.e., S. salivarius, S. mitis, and S. 
oralis [99]. It was shown that AgNPs produced from the aque-
ous extracts of different rice grain parts (rice husk (RH), rice 
germ (RG), and rice bran (RB)) have antimicrobial action against 
E. coli, S. aureus, C. albicans, and S. mutans100. The growth of all 
tested microorganisms was inhibited by AgNPs [100]. According 
to the findings of a research, the biogenic AgNPs caused im-
provement of activities in comparison with chemically synthe-
sized AgNPs and CHX. Using extracts of Camellia sinensis (Cs) 
and Heterotheca inuloides (Hi), the reduction of the chemical 
AgNPs was made by sodium borohydride (NaBH4), resulting in 
the production of two green AgNPs [101]. In comparison with 
Cs-AgNPs, more stable and smaller NPs were produced by Hi. 
The inhibition of the growth of L. casei and S. mutans occurred 
better by green AgNPs than 2% CHX, but the smaller Hi-AgNPs 
showed improved antibacterial activities [102]. Moreover, the 
greatest antibiofilm and antimicrobial activity against C. al-

bicans and S. mutans was observed in AgNPs produced from 
extracts of different parts of pomegranate combined with 
β-calcium glycerophosphate and alone [103]. Also, it is known 
that Gum acacia-AgNPs show antibacterial action against M. Lu-
teus and E. coli, while no inhibition effects were demonstrated 
by the G. acacia extracts [104]. Plant extract-mediated AgNPs 
offer a one-pot approach for in situ synthesis of AgNPs and also 
provide very stable AgNPs since they function as both stabilizing 
and reducing agents. It is possible to combine them in various 
formulations, like toothpastes and mouth rinse for improving 
their bioactivities [105]. The number of studies examining the 
cytotoxicity of AgNPs produced by green synthesis for confirm-
ing their assumed higher biocompatibility is limited. Despite the 
high bias in studies that report on AgNPs obtained by green ap-
proaches, these NPs can show properties similar to chemically 
synthesized AgNPs. It has been demonstrated that AgNPs syn-
thesized from Cotyledon orbiculata decrease the possibility of 
THP-1 differentiated macrophages at concentrations 2.5-20 µg/
Ml [106]. AgNPs developed from red pear extracts did not show 
toxicity to RAW 264.7 cells at concentrations up to 500 µg/mL, 
whereas the AgNPs produced from green pear extracts caused 
cell viability reduction with concentrations above 125 µg/mL. 
These AgNPs presented considerable antibacterial activities at 
concentrations that lack toxicity to mammalian cells, meaning 
biocompatibility and safety of these AgNPs for applications at 
these doses [107]. Many research works unfortunately do not 
provide proper normal cell controls for comparing the impact 
of nanomaterials on diseased and normal cells. However, it 
has been shown that green synthesized AgNPs have superior 
therapeutic activities. According to research findings, Haliclona 
exigua-AgNPs have dose-dependent cytotoxicity on the hu-
man oral cancer (KB) cell line with half the maximal inhibitory 
concentration (IC50) of 0.6 mg/mL [99]. Furthermore, AgNPs 
developed with Amphipterygium adstringens and Glycyrrhiza 
glabra (G. glabra) extracts caused an inhibition of the bacterial 
growth of the fungus C. albicans and E. faecalis. Their antiprolif-
erative activities were examined on human epithelial cells, and 
it was found that AgNPs developed with A. adstringens extract 
showed higher toxicity to human cells in comparison with the 
NPs developed with G. glabra extract [108]. Besides, AgNPs syn-
thesized by natural black tea extract showed more cytotoxic 
activities against ovarian carcinoma in comparison with the 
colorectal carcinoma cell line [109]. AgNPs have indisputable 
benefits in dental therapy. However, there are environmental 
and health concerns related to using nanomaterials. Thus, us-
ing risk assessment measures, the safety profile of the AgNPs 
should be ascertained and ensured before their usage in con-
sumer products, which requires strategies that offer localized 
AgNP impacts for reduction of bystander cytotoxic effects [110]. 
Consequently, it is more desirable to consumers to use natu-
ral products in dental designs as substitutes to fluoride-based 
containing dentifrices since it is safer. According to research 
findings in dentistry, silver NPs are used in various specialties, 
such as oral microbiology, prosthodontics, preventive dentistry, 
periodontics, orthodontics, and endodontics. Moreover, there 
are some studies investigating the capacity of utilizing silver 
NPs by examining their antimicrobial impacts against the most 
prevalent oral pathogens. Plant extract-mediated AgNPs both 
offer a simple one-pot technique for in situ synthesis of AgNPs 
and synthesizes very stable AgNPs since they function as sta-
bilizing and reducing agents. It is possible to incorporate them 
in different formulations, like toothpastes and mouth rinse for 
improving their bioactivities [111]. Also, the green AgNPs is uti-
lized alone or combined with other dental agents to obtain sus-
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tainable therapeutic outcomes. It can be concluded that AgNPs 
synthesized using a green process is a promising approach for 
producing antimicrobial agents against oral pathogens.

Oral Microbiology

The oral cavity is a microbiome inhabiting above 700 spe-
cies112 of protozoa, viruses, and fungi11. It is an essential factor in 
perceiving the etiology of most systemic and oral diseases [112-
114], and in most cases, this microbiome is a determining factor 
of disease and health status. In order to maintain systemic and 
oral health, the oral microbiota balance is crucial [112]. As indi-
cated by previous studies, the most frequent microorganisms in 
the healthy oral microbiome are the Proteobacteria, Firmicutes, 
Actinobacteria phyla, and Fusobacteria. The most prevalent is 
the genus Streptococcus, and Prevotella, Veillonella, Neisse-
ria, and Haemophilus are in the following ranks [114]. Besides, 
studies have indicated that AgNP impose antibacterial activ-
ity against Staphylococcus aureus [115,120,121,119,122,123], 
Streptococcus mutans [115-119], Lactobacillus acidophilus, 
Streptococcus sobrinus, Streptococcus sanguinis [117], Lacto-
bacillus casei, Actinomyces actinomycetemcomitans [117], and 
Enterococcus faecalis [119,123]. Also, AgNPs avert the growth 
of S. aureus, E. faecalis, Streptococcus gordonii, Streptococcus 
mutans biofilms, and Streptococcus mitis [124]. However, it is 
important to know that these studies investigated the forma-
tion of biofilm in monocultures. Dental caries in the oral cavity 
possesses complex multispecies biofilms. Hence, in vitro data 
cannot be extrapolated to the clinical application of AgNPs 

[124]. It has already been revealed that nanoparticles have ro-
bust antimicrobial activities against Gram-negative and Gram-
positive bacteria in planktonic, biofilm, or agar-grown cultures. 
Although Gram-positive bacteria have a protective thick exter-
nal peptidoglycan layer, they are highly susceptible to the an-
timicrobial activity of silver [124]. Gram-negative bacteria, like 
Pseudomonas aeruginosa and Escherichia coli, do not show 
resistance to the silver’s antimicrobial action [120-124]. There 
is an indirect relationship between the antimicrobial effective-
ness of nano-silver and the size of silver NPs [125]. Silver NPs 
that have smaller diameters show better biofilm inhibition re-
sults compared to those with larger diameter sizes [126] and are 
more effective against Streptococcus orallis biofilms [127] and 
S. mutans [128]. Nevertheless, it has also been indicated that 
larger AgNPs have considerable antimicrobial activity against 
various dental plaque microorganisms, which shows appro-
priate inhibition with bacterial growth even at low concentra-
tions126. Antimicrobial activities have been noted in biologically 
developed AgNP (by the use of onion, tomato, and neem in 
the synthesis process) with large sizes (26.2-33.3 nm) against 
S. aureus, potentially for the high concentration of terpenoids 
and flavonoids [129]. AgNPs were more functional compared to 
chlorhexidine against Klebsiella pneumoniae, Enterococcus fae-
calis, S. mutans [125], and C. albicans [130]. According to other 
studies, pure chlorhexidine shows higher antimicrobial activity 
against C. albicans and E. faecalis126-131, and a positive synergistic 
effect was observed in combination of AgNP with chlorhexidine 

[131], bio-composites, like antibiotics [132] or calcium glyceride 
phosphate [133].

Pediatric Dentistry

Dental caries is a dysbiotic disease with a polymicrobial etiol-
ogy resulting from the imbalance between remineralization and 
demineralization [134,135]. Dentistry attempts to fight against 
caries by control of the microbiota and stimulation of the rem-
ineralization of emerging lesions on the enamel surface. This 

is the most frequently employed treatment in primary teeth. 
Infiltrating carious lesions, silver ions precipitate, which make 
the enamel harden. Dental surgeons utilize sodium fluoride var-
nish in the clinical practice for the remineralization of aborn-
ing lesions. However, with the addition of 5% of nano-silver to 
the sodium fluoride varnish, a 77% inhibition is obtained for 
the progress of caries lesions in residual teeth, without leaving 
painful ulcers or a metallic taste [136]. Management of silver 
Nano-fluoride (NSF) is simple, it can be used only once a year, 
it presents an acceptable cost-benefit ratio, and it is possible to 
use it for replacement of varnish with sodium fluorine [137] or 
the traditional silver compound, Silver Diamine Fluoride (SDF). 
NSF is a bacteriostatic compound since it causes the inhibition 
of the S. mutans biofilm growth [138]. Moreover, it can paralyze 
caries activity; thus, it is utilized as an inhibitory treatment that 
does not stain teeth of children [138,139]. In artificial enamel 
caries, AgNPs related to a 650 nm Laser [140] and AgNPs in 
combination with graphene oxide (rGO/Ag) [141] composites 
reduced the artificial enamel caries’ demineralization in a bio-
film S. mutans model. Glass ionomer cement (GIC) is broadly 
applied in pediatric dentistry, and it is popular for its storage 
capacity and fluoride release. As a result of this release, cement 
acts as an anti-caries compound, causing inhibition of bacterial 
enzyme enolase by fluoride. Nevertheless, it requires fluoride 
recharging occasionally so that its anti-caries impact is main-
tained. Thus, the functionality of this cement in fighting against 
oral diseases can be increased by the GIC impregnation with 
longer-lasting antimicrobial agents. The relationship between 
AgNP and GIC made a biomaterial with antimicrobial activity 
against Gram-negative and Gram-positive bacteria [142,143]. 
With the release of silver ions, the antimicrobial action occurs, 
causing an oxidative dissolution in the cement matrix, which 
inhibits dental caries and prevents oral biofilms’ development. 
The union of these materials presents mechanical parameters, 
such as commercial GIC143. According to reports, in testing 12 
nm AgNPs in combination with GIC, AgNPs did not show cyto-
toxicity to odontoblastic lineage cells [144]. Moreover, immobi-
lization of AgNP in Halloysite Nanotubes (HNT/Ag) and its com-
bination with new experimental dental resin composite cause 
the inhibition of the growth of S. mutans without any related 
cytotoxicity [145]. In previous studies, AgNP has been included 
in a resin matrix based on bisphenol A-glycidyl methacrylate/
triethylene glycol dimethacrylate (BISGMA/TEGDMA) that is 
employed in repairs of permanent and deciduous dentitions 
through chitosan polymers. Antimicrobial action against S. mitis 
was discovered, which represents a reduction of antimicrobial 
activity by the coating of restorative materials with the polymer 

[146]. However, it has been indicated that there is an incom-
plete nanocomposite polymerization (resin + AgNP) with in-
creased release of unbound monomers [147]. In the literature, 
it is not clearly stated whether it is possible to combine AgNPs 
with polymer resins in restorative dentistry [148,149].

The material marginal infiltration was not reduced by the 
AgNP incorporation with composite resins [150]. The polymer-
ization type affected the final mechanical properties of these 
nanocomposites [151]. The application of photopolymerization 
for forming resins used with silver NPs did not enhance the me-
chanical characteristics in comparison with commercial resins 

[152].

Cohesive failures and surface wetting were improved by den-
tin adhesives related to AgNPs [153]. It was noticed that there 
was antimicrobial activity when testing AgNP and self-etching 
adhesives against S. mutans, and the conversion of adhesive 
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into the resin was not compromise [154] . The incorporation 
of AgNP increased durability of the antibacterial activity. It can 
be used for instant antibacterial needs [155]. Greater shear 
strength was observed in two-step adhesive systems related to 
AgNP compared to self-etchers/AgNP [156]. AgNP powder pro-
vided better outcomes compared to the alcoholic AgNP solution 
in terms of the conversion degree of the self-etching adhesive 
and antimicrobial activity [154]. As a result of incorporation 
of AgNP in antiseptics, biocompatible commercial products 
(Nanocare Gold) have been obtained without cytotoxicity to 
stem cells from dental pulp [142].

Orthodontics

The cleaning process is slowed down due to the existence of 
fixed orthodontic appliances on surface of teeth, which results 
in the accumulation of dental biofilm [157]. The most prevalent 
consequence in individuals using fixed orthodontic appliances 
is incipient caries lesions, called white spots, which is particu-
larly evident when oral hygiene is poor [158] . After applying 
orthodontic appliances, the Lactobacilli spp. And Streptococ-
cus mutans increase in dentition, saliva, and plaque formation 

[159]. For avoiding this condition, AgNP has been used for treat-
ing elastomeric modules, titanium micro-implants, orthodontic 
wire, and brackets [117,126,160].

AgNP treatment caused demineralization reduction in indi-
viduals under orthodontic therapy, and antibacterial activities 
were observed against L. casei, E. coli, S. aureus, S. mutans160. 
AgNP presented non-stick biological characteristics in brackets 
and wires126 against S. mutans [120,126,161]. It should be men-
tioned that only one research examined varying sizes of silver 
NPs, and better outcomes were obtained with smaller-sized 
particles [126]. As shown by the reduced emergence of dental 
caries on smooth surfaces following impregnation of AgNPs, the 
antibacterial action of silver NPs has contact inhibition features 
and not only with ion release [161]. Besides, NPs have been 
used in acrylic resins, base plates of orthodontic appliances, in-
hibiting the formation of biofilm and planktonic growth [116]. 
Antimicrobial activity was noted in titanium micro-implants 
treated with 21% AgNP and biopolymer [117]. It was also ob-
served in AgNP and GIC composites employed in orthodontic 
cementation, which could decline the metabolic activity of the 
biofilm and the production of the bacterial acid [158].

Endodontics

Apical periodontitis is essentially caused by necrotic or in-
flamed pulp that is a colonization complication by microorgan-
isms, which can result in bone infection [162]. Despite polymi-
crobial etiology, there is Enterococcus faecalis, an anaerobic, 
facultative Gram-positive bacterium, in infected root canals, 
which causes persistent infections treatment of which is prob-
lematic. E. faecalis biofilm is disrupted by combining AgNP with 
composites through releasing silver ions [163]. Besides, when 
AgNPs were employed as final endodontic irrigators, their an-
timicrobial effect was indicated, which is like the 2.5% sodium 
hypochlorite treatment [164].

Mineral trioxide aggregate (MTA) and calcium-based cement 
associated with AgNP showed antimicrobial action against Ac-
tinomyces spp., Streptococcus mutans, Escherichia coli, C. albi-
cans isolates, and E. faecalis. Silver particles are able to reduce 
the microorganisms’ attachment to the surface of the tooth and 
improve the antibacterial characteristics of endodontic sealers 

[165]. Also, such particles caused an increase in the MTA radi-

opacity [166].

Periodontics

In the analysis of the AgNP use in dentistry, the most im-
portant point is to determine the ideal concentration toxic to 
microorganisms and not cytotoxic to the cells of the patient 
so that it is ensured that healthy tissues are not changed. Sil-
ver NPs are toxic against microorganisms that generate dental 
caries and may be active for oral cavity tissues and other cells. 
Hence, the AgNP action on human oral keratinocytes [167] and 
human gingival fibroblasts [168,169] has been shown in some 
studies.

As a result of the relationship of AgNPs with sodium fluoride 
or fluorine168, oxidative stress increases in gingival fibroblasts, 
which results in inflammation of tissues, leading to apoptosis 
and compromising cell viability [170], while 2 nm AgNPs at a 
concentration of 1.5 ug/mL did not show any cytotoxic activity. 

Biocompatibility can be improved by the strategy of cap-
ping silver NPs through forming surface functionalization168. 
The cytotoxic impacts against human gingival fibroblasts were 
decreased at nontoxic concentrations (<50 µg/mL) by 10 nm 
NPs capped with polyethylene glycol or lipoic acid toxic concen-
trations, and considerable antimicrobial potential168 and inhi-
bition of S. mutans strain biofilms and methicillin-resistant S. 
epidermidis were noted. Results demonstrated a relationship 
between the AgNP cytotoxicity in human oral keratinocytes and 
inflammatory processes and lysosomal damage, and due to ac-
tivation of NLRP3 inflammasomes by high AgNP concentrations, 
the number of acidic organelles is reduced, resulting in cathep-
sin B expression [171]. 

Prosthodontics

This field is classified into two areas: dental prosthesis and 
dental implantology. Prosthodontics comprises planning for 
treatment, diagnosis, rehabilitation, and preservation of the oral 
appearance and function, health, and comfort in clinical condi-
tions related to deficient or missing teeth and/or maxillofacial 
and oral tissues by the use of biocompatible substitutes [172]. 

Dental Implantology

Implant failure, known as peri-implantitis, mainly occurs 
due to bacterial biofilm formation on the dental implants’ sur-
faces. The lengthy AgNP deposition has a harmful interference 
in the surface properties, which increases the hydrophobicity 
and roughness, and the likelihood of adherence of oral bacteria 
is higher in these conditions. The 0.1 ppm concentration was 
toxic to human osteoblasts [173]. It has been suggested that 
the modification of surface nanotopography influences bacte-
rial adherence to implants [174].

The lactate production by microorganisms and biofilm adhe-
sion was reduced by titanium discs treated with AgNP-based 
composites, though some cracks were presented [174]. With 
coating titanium discs with AgNP and hydroxyapatite, they pres-
ent activities against E. coli [175]. By applying AgNP suspension 
on the implants’ surface with hexagonal links, a reduction was 
observed in C. albicans contamination [176].

With the treatment of hydrogentitanate nanotubes with 
AgNP, it was found that there is a long-lasting antibacterial effect 
against E. coli since it presented a long-term Ag+ release [177]. 
With treatment of titanium with varying concentrations of poly-
oxoxamine (PDA) and silver [178], antibacterial activity against 
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P. gingivalis and S. mutans was found. When AgNPs were direct-
ly developed on the titanium plate with no toxic effect on hu-
man dental pulp stem cells, they presented antibacterial effect 
against S. mutans [179]. Using Silver plasma conditions, titanium 
implants with hierarchical nano/ microstructures show antibac-
terial activity against and Gram-negative Fusobacterium nuclea-
tum and Gram-positive S. aureus [180] . Besides, it was indicated 
that treatment of implants with Silver Plasma provides higher 
osteointegration compared to acid-treated implants [181]. As 
a result of the association of AgNPs with NRL (Natural Rubber 
Membrane), cytotoxicity reduced, presenting 98% cell viabil-
ity [182]. Due to the guided tissue regeneration of membrane 
impregnated with silver NPs, the tensile strength increased 
and the biomaterial’s fiber diameter was minimized [183]. 

Dental Prosthesis

There is the problem of C. albicans infections in the PMMA 
resin-based prosthetic devices [184-186], affecting their useful 
life. Protocols have been presented for periodic chemical clean-
ing of prostheses for eliminating these infections. Nevertheless, 
due to treatment repetition, the prosthesis surface is damaged 
and the longevity of prosthetic devices and implants is compro-
mised [187-189]. Prosthetic devices and molds in dentistry were 
produced by using compounds based on PMMA, silicones, BISG-
MA/TEDGMA, tissue conditioners, porcelain, and alginates, and 
with adding AgNPs, antimicrobial effects enhance according to 
the concentration of NPs [190]. The mechanical characteristics 
of the impression material did not alter with the addition of 
AgNPs to alginates [191], while the setting time was reduced 
and the solubilization of Portland cement was increased [192]. 
Research findings indicate that the appropriate strategy for im-
provement of the performance of PMMA matrices is structural 
modifications at the nanoscale or by combining with compos-
ites. The mix of 1% silver graphene has been demonstrated to 
improve the mechanical characteristics of PMMA [193], increas-
ing their viscoelastic properties [194]. Antibacterial properties 
were observed as a result of the combination of AgNPs and 
titanium dioxide, and the material mechanical properties did 
not improve [195]. Additionally, it was demonstrated that the 
antibiofilm activity was improved by the association of AgNPs 
with quaternary ammonium dimethacrylate (QADM) [196]. The 
incorporation of AgNPs into ethylene-vinyl acetate copolymer 
masterbatch inhibited the growth of Streptococcus sobrinus, 
Porphyromonas gingivalis, and E. coli without any damage to 
the mouthguard [197]. With the incorporation of this material 
with AgNPs, it resulted in increased fracture resistance, the use-
ful life of porcelains, and fatigue parameter [198,199]. In a mul-
tifunctional biogenic composite, with mixing NPs with PMMA, 
a reduction was observed in 2-methacryloyloxyethyl phosphor-
ylcholine (MPC), dimethylaminohexadecyl methacrylate root 
dentin demineralization, and amorphous calcium phosphate 

[200] . The AgNPs change colors in prosthetic devices [201,202]. 
Changes in color were due to the AgNP plasmatic impact via 
electronic propagation as an electromagnetic wave in the vis-
ible light spectrum [203,204].

Conclusion

There is a global growth in researches and technological 
development on AgNP in the dentistry area, indicating the in-
crease in research on this technology, which has already proven 
the antimicrobial activity of AgNPs. Thus, AgNPs acts as an an-
timicrobial agent for use in the control of bacteria, caries activ-
ity, tissue inflammation, and bone loss, when at concentrations 
presenting low cytotoxicity to the patient’s cells.
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