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Abstract

A dysfunctional endothelium is the first step toward many 
diseases of modern civilization, including hypertension, cor-
onary atherosclerosis, diabetes, obesity, heart failure, as 
well as aging. The development of new nanomedical devices 
and nanosensors allows in situ monitoring and measuring 
of the molecular processes in a single endothelial cell. It 
appears that the first step in triggering the dysfunction of 
endothelial cell is diminishing the release of cytoprotective 
molecule nitric oxide (NO). This process is coupled with the 
enhanced production of the cytotoxic molecules, superoxide 
(O2

-) and peroxynitrite (ONOO-). There are two major sources 
of the O2

- in endothelial cells: NADPH oxidase and uncoupled 
endothelial nitric oxide synthase (eNOS). NO is an efficient 
scavenger of O2

- which produces ONOO-. Peroxynitrite is a 
powerful oxidant and is the main component of nitroxida-
tive stress. It appears that the damaging effects to the bi-
ological milieu are not dependent on the absolute level of 
ONOO- by endothelium, but rather on the ratio of NO con-
centration, [NO], to the concentration of ONOO-, [ONOO-]. 
[NO]/ [ONOO-] ratio can be a precise indicator of a level of 
endothelial dysfunction. Endothelial function and eNOS cou-
pling can be partially restored by several currently available 
drugs like statins, ACE inhibitors, and β-blockers and also 
vitamin D3. The restoration of functional endothelium can 
significantly improve a function of the cardiovascular system 
and inhibit progression of vascular damage due to diabetes, 
atherosclerosis, and aging.
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Introduction

Functional endothelium plays a crucial role in maintaining an 
optimal performance of the cardiovascular system [1]. Nitric ox-
ide (NO) is one of the most important messengers produced by 
functional endothelium [2,3]. NO is a regulatory and cytopro-
tective molecule and plays two crucial roles in the vasculature: 
it stimulates vascular smooth muscle relaxation and prevents 

the adhesion of blood components like platelets, leukocytes 
and also other biological molecules (like LDL) to the membrane 
of endothelial cells [4-10].

NO release in the vasculature is generated mainly by en-
dothelial nitric oxide synthase (eNOS) and can be stimulated by 
shear stress induced calcium flux and by different agonists like 
acetylcholine, nor epinephrine and others. In blood, NO can be 
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coordinated to hemoglobin, or it can be scavenged by super-
oxide (O2

-) – a second messenger and powerful oxidant. There-
fore, the half-life of NO can vary significantly from 2-4 s under 
laminar blood flow, to much less than 1 s under turbulent blood 
flow. As a result, the bioavailability of NO in the vasculature is 
limited not only by the expression and efficiency of eNOS but 
also by the level of reactive oxidative species (ROS), as well as 
laminar vs. turbulent flow. Superoxide anion is a major primary 
component of the ROS in addition to peroxynitrite (ONOO-), hy-
drogen peroxide and possibly hydroxyl radical (OH•) [11-14].

The peroxidation is the main product of rapid scavenging 
of NO by O2

-, which is also the main component of nitroxida-
tive stress. ONOO- is a cytotoxic vasoconstrictor that can impair 
several biological processes, cause the inhibition of several en-
zymes, and cause nitrosylation of proteins, as well as can trigger 
apoptosis, necrosis, and cell death [15-17]. In normal endothe-
lium, the production of ONOO- is relatively low and this mole-
cule can be isomerized to produce harmless nitrate (NO3-). It has 
been suggested that at high levels of ONOO-, the isomerization 
process can be homolytic and may lead to the production of 
highly aggressive, radicals like OH• and NO2

•. Therefore, a prop-
er balance between bioavailable NO and ROS (mainly O2

- and 
ONOO-) is required for the optimal function of endothelium. 
However, under pathological conditions of diabetes, athero-
sclerosis, hypertension, ischemia, aging, heart failure and oth-
ers, a significant and unfavorable shift in the balance between 
NO, O2

-, and ONOO- has been observed [10,18-23].

The severity of ROS damages to cell function does not depend 
only on the absolute accumulation of ONOO- and/or O2

-, but 
rather on the relative level of these two toxic molecules com-
pared to cytoprotective NO [24,25]. Based on our nanomedi-
cal studies, which allows for the simultaneous measurements 
of NO, O2

- and ONOO- concentrations produced by a single en-
dothelial cell, we were able to conclude that the ratio of NO 
concentration, [NO], to the concentration of ONOO-, [ONOO-], 
or [NO] to the sum of [O2

-] and [ONOO-] accurately reflects and 
correlates with the function/dysfunction of endothelial cells in 
health and disease [26-31]. In review, presented here, we sum-
marize our findings and findings of others concerning the role 
of NO and ONOO- imbalance in dysfunctional endothelium - a 
common denominator of many vascular diseases.

Nanomedical Approach to the Study of Endothelial Dys-
function

Nanomedical systems of analysis found a unique applica-
tion for the in situ monitoring of signaling molecules in a sin-
gle endothelial cell [3,29,32-37]. Nitric oxide, superoxide, and 
peroxynitrite are short-living, highly reactive species. The short 
half-life of NO (a few seconds) and the even shorter half-life of 
O2

- and ONOO- (less than 1 second) makes the in situ monitor-
ing and measurement of these molecules, in vivo or in vitro, 
very challenging. Additionally, a diffusion controlled propaga-
tion rapidly decreases NO concentration in the vicinity of en-
dothelium and creates additional problems with its detection. 
The concentration of NO required to trigger smooth muscle re-
laxation is on the nanomolar level (8-15 nM). In order to deliver 
this concentration to the target (smooth muscle cells) in a rela-
tively short time, the surface concentration of NO on endothe-
lial cell membrane has to be much higher (about 100-500 nM). 
Our modeling experiments with NO concentration was around 
300±50 nM on the cell membrane. The diffusion process de-
creased [NO] and reached the level of 5-15 nM at a distance of 
100 µm [27].

Electrochemical nanosensors developed in our laboratories 
have a detection limit of 1-3 nM, and a linear concentration re-
sponse from nanomolar to micromolar level. The most impor-
tant features of these nanosensors are the small size and the 
capability to simultaneously measure the real concentration of 
bioavailable NO, O2

-, and ONOO- in near real-time in a single cell 
(usually better than 10 µs) [3,14,16,26,36,38-43]. The precise 
location of sensors relative to the endothelial cell membrane is 
of great importance to achieve reproducible data. These minute 
sampling volumes, along with the sensitivity and the precision 
of the nanosensors (located in a very close proximity to the cell 
membrane) cannot currently be matched by any other bioana-
lytical techniques.

In order to maintain the reproducibility of the measure-
ments, it is necessary to position the nanosensors in well-de-
fined X,Y,Z coordinates, as close as possible to the membrane 
of a single endothelial cell, without touching the surface. Each 
sensor samples a volume of picoliter to femtoliters and can be 
positioned about 3-5 µm above the cell membrane with a preci-
sion better than 1 µm. Atypical response of sensors (current/
concentration vs. time) to stimulated NO, O2

- and ONOO- re-
lease by normal and dysfunctional endothelial cells are shown 
in Figure 1 (these unpublished data were acquired in TM labs). 
The bioavailable maximal concentration of NO decreases while 
the maximal concentrations of ONOO- and O2

- increase signifi-
cantly in dysfunctional endothelium (Figure 2).

Mechanism of NO, O2
- and ONOO- generated by normal 

and dysfunctional endothelium

NO stimulates soluble guanylate cyclase to form cGMP, 
which triggers smooth muscle relaxation and increases the di-
ameter of the vascular lumen. NO can be generated not only 
by endothelium but also by platelets and leukocytes. Therefore, 
NO is the first line of protection against atherogenesis and the 
formation of atherosclerosis [9,13,44,45].

NO is produced from two substrates L-arginine and oxygen. 
In this process, L-arginine is oxidized in a 5-electron transfer re-
action to form L-citrulline and NO (Figure 3). A dimeric form 
of eNOS is a catalyst for NO synthesis. An important cofactor 
of this process is tetrahydrobiopterin, BH4 [46,47]. In order to 
produce NO, the dimeric form of eNOS is stabilized (coupled) 
by both substrates L-arginine and O2, as well as the cofactors. 
With insufficient levels of any of the substrates or cofactors, the 
dimeric form of eNOS is destabilized (uncoupled) and starts to 
concomitantly produce O2

- in a one-electron transfer to oxygen 
and NO in a five electron oxidation of L-arginine [11,171,41,48-
50].

The concomitant production of NO and O2
-, by eNOS, results 

in the generation of ONOO-. The reaction between NO and O2
- 

is a highly efficient diffusion controlled process (k=5x109M-1s-1). 
The ONOO- that is generated in this process is one of the most 
powerful oxidants in the biological milieu, much stronger than 
O2

- or NO [14,19,24,25]. Therefore, uncoupled eNOS can gen-
erate cellular and intracellular oxidative/nitroxidative stress in 
the endothelium, which trigger a cascade of events leading to 
destruction of the cardiovascular system. In addition to uncou-
pled eNOS, NADPH oxidase is also a potent source of O2

- in en-
dothelium. In normal functional endothelium, NADPH oxidase 
produces relatively low levels of O2

-, therefore its contribution 
to ONOO‑ production is minimal. However, in dysfunctional en-
dothelium, eNOS is the dominant source of O2

- (60-70%) while 
NADPH accounts for 30-40%, leading to the high production of 
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ONOO- [26,53,55].

ONOO- is a short-living ion that can be protonated (pKa of 
6.8) to form a diffusible peroxynitrous acid (ONOOH). ONOO-/
ONOOH has an especially devastating cytotoxic effect causing: 
nitrosylation, nitration, apoptosis, necrosis, lipid peroxidation, 
enzyme inactivation, and DNA change. Therefore, high level of 
ONOO-/ONOOH is a common denominator of several diseases 
including hypertension, diabetes, atherosclerosis, heart attack, 
stroke, Parkinson’s, Alzheimer’s, aging, hypovolemia, heart fail-
ure and others [11,12,16,17,18,20,45,56]. ONOO- is produced at 
the expense of NO. Therefore, high levels of ONOO- are always 
accompanied by low levels of bioavailable NO. As a net effect, 
there is a decrease in the efficiency of the cardiovascular sys-
tem. This is not only due to high nitroxidative stress, but also 
the deficiency in NO signaling. Additionally, a decrease in NO 
may accelerate the adhesion and aggregation of the various bi-
ological components in the blood, such as platelets, leukocytes 
and LDL, among others.

We found that absolute values of NO and ONOO- concen-
trations do not necessarily reflect on cardiovascular function. 
Rather, it is the ratio of NO concentration, [NO], to ONOO- con-
centration, [ONOO-] that provides the most accurate correlation 
between the function of endothelium and the cardiovascula-
ture. This ratio, [NO]/[ONOO-] in functional endothelium varies 
from 2-6. At [NO]/[ONOO-] below 2.0, the endothelium can be-
come partially dysfunctional, and at a level below 1.0, endothe-
lium is significantly dysfunctional. We used [NO]/[ONOO-] ratio 
to quantify endothelial function/dysfunction [10,25,30,57-59]. 
This was possible due to nanomedical systems which allows us 
the precise and simultaneous measurements of the real con-
centrations (expressed in the same units) of NO and ONOO- by 
nanosensors. Both ratio of [NO] to [ONOO-] and a ratio of [NO]/
[ONOO-]+[O2

-] can be used for characterization of endothelial 
function/dysfunctional and coupling/uncoupling of eNOS syn-
theses.

Restoration of and protection against endothelial dysfunc-
tion

There are at least four different approaches for the protec-
tion/prevention and restoration of endothelial function. First, 
and the most important, is the prevention of eNOS uncoupling 
in functional endothelium. The prevention can be realized by 
increasing the level of eNOS substrate L-arginine and/or oxy-
gen, and cofactors like tetrahydrobiopterin. Also, a decrease 
of expression of eNOS in endothelium, and the decrease of 
the expression NADPH oxidase is helpful in the prevention of 
eNOS uncoupling. Paradoxically, the decrease in eNOS expres-
sion improves eNOS coupling and efficiency due to relative 
increase in the ratio of substrates & cofactors in relation to 
eNOS [5,8,10,12,22,30,32,60,61]. At least partial restoration 
of endothelial function can be achieved by treatment with 
statins, β-blockers, ACE inhibitors or other drugs [12,20,26,28
,29,35,41,50,54,56,58,62,71]. The pleiotropic effect of statins, 
β-blockers, and ACE inhibitors include a stimulated release of 
NO followed by a decrease of eNOS expression and increase in 
relative availability of substrates and cofactors and increase in 
eNOS coupling. Also, treatment with an elevated level of L-argi-
nine and/or the precursor of BH4 (sepiapterin) or vitamin D3 can 
partially restore eNOS coupling and increase the NO bioavail-
ability in dysfunctional endothelium [32,37,39,60]. The third, 
and oldest, treatment of dysfunctional endothelium would be 
supplementation of NO donors in the form of nitroglycerine, ni-
trates, nitroso albumine or in gaseous forms of NO or O2 [42,72]. 

The last, and least effective manner of treatments appears to 
be supplementation of antioxidants for scavenging of O2

- and 
ONOO- [19,40,53]. The antioxidants can be effective at a low 
level of eNOS uncoupling, however, with advanced uncoupling 
observed in a disease state, very large doses of antioxidants 
would be required to efficiently scavenge O2

- and/or ONOO-. 
This high doses (hundreds of grams, daily) of antioxidants are 
neither physiologically acceptable nor deliverable.

Therefore, the scavenging of the high levels of reactive oxy-
gen species (ROS) in cardiovascular diseased state has minimal 
effect on the progression of the disease in advanced stages. 
Several of the existing drugs used for the treatment of cardio-
vascular diseases shown the pleiotropic effects on endothe-
lial function. Nebivolol and carvedilol, third-generation of 
β-adrenoceptor improved the release of NO by the endothe-
lium, decreased ONOO- production and improved microcircula-
tion [62]. Nebivolol reduced nitroxidative stress and restored 
NO bioavailability in endothelium of African Americans [41]. 
Endothelial cell dysfunction contributes to insulin resistance 
in diabetes and is characterized by reduced NO and increased 
ONOO-. Saxagliptin treatment restored NO and reduced ONOO- 
concentrations in obese rats [63]. Also, saxagliptin (dipeptidyl 
peptidase-4 inhibitor) enhances NO release and reduced blood 
pressure and sICAM-1 levels in hypertensive rats. Nanomedical 
studies show that adverse balance of NO/ONOO- in dysfunc-
tional endothelium can be reversed by statins [50-52].

Amlodipine and atorvastatin showed synergistic effects in 
reversing LDL-induced endothelial dysfunction [65]. Aspirin 
decreased the activity of inducible nitric oxide synthase (iNOS) 
and increased NO production by eNOS [44]. S-nitro so albumin 
partially restored endothelial function and reduced ischemia/
reperfusion injury in the pig heart after unprotected warm 
ischemia [42-45]. Also, S-nitroso albumin attenuated ischemia/
reperfusion injury after cardioplegic arrest [21]. Nebivolol can 
favorably change the kinetics and balance of NO and ONOO- re-
lease in human endothelial cells [26]. Angiotensin II receptor 
blockers improved NO production in different eNOS variants 
[26]. Amlodipine increased endothelial NO and decreased ni-
troxidative stress disproportionately to blood pressure changes 
[54]. The chronic treatment with vasopeptidase inhibitor (AVE 
7688) and ramipril improved endothelial function in diabetic 
rats [73]. A significant restoration of endothelial function was 
observed after long-term treatment of adult hypertensive rats 
with raloxifene [68]. Also, the combination of eicosapentaenoic 
acid and statins treatment restored the function of human um-
bilical vein endothelial cells (HUVECs) exposed to oxidized LDL 
[69,74,75]. Nebivolol improved endothelial function more sig-
nificantly in Mexican Americans than in non-Hispanic white do-
nors [15]. The synergistic effect of two or three different drugs 
in the restoration of endothelial function was also observed. 
Nebivolol and valsartan increased nitric oxide release from hu-
man endothelial cells in a synergistic fashion [76].

A noninvasive, nanomedical methods of measurement of 
endothelial function has already helped to understand the 
fundamental mechanism which can lead to dysfunction of en-
dothelium and dysfunction of the cardiovascular system. The 
elucidation of the mechanism of endothelial dysfunction with 
nanosensors has already accelerated and development of sev-
eral treatments for the restoration of endothelial function in 
dysfunctional a cardiovascular system. These treatments can 
help to restore the function of endothelium damaged by hy-
pertension, atherosclerosis, diabetes, and aging. However, we 



4Journal of Nanomedicine

MedDocs Publishers

recently found that the most efficient agent for the prevention/
restoration of dysfunctional endothelium can be an active me-
tabolite of vitamin D3, 1, 25-dihydroxy vitamin D3. This molecule 
efficiently stimulates the production of bioavailable NO and de-
creases the concentration of ONOO- in dysfunctional endotheli-
um (cellular model of hypertension). Most importantly, vitamin 
D3 effectively decreases the expression of eNOS and NADPH oxi-
dase and effectively restores endothelial function [32].

Figures

Figure 1: Typical amperograms showing a plot of concentrations (proportional to current) versus time, recorded  
with nanosensors. The release of NO, ONOO- and O2

- was recorded from a single functional (A) and dysfunctional (B) HUVECs. 
The dysfunction of the HUVECs was triggered with 300 mg/dL D-glucose treatment for 2 hours. In dysfunctional endothelium, the 
[NO] level was about 60% lower, while [ONOO-] was about 70% higher than in functional endothelium. The release of NO, ONOO- 
and O2

- was stimulated with 1 µM of calcium ionophore A23187 (CaI). (Unpublished data collected in TM laboratory).

Figure 2: The ratio of maximal [NO]/[ONOO-] concentrations in 
functional and dysfunctional HUVECs (A) and the ratio of maximal 
[NO]/[ONOO-]+[O2

-] in functional and dysfunctional HUVECs (B). 
The dysfunctional endothelium was obtained after treatment of 
functional endothelium with 300 mg/dL D-glucose for 2 hours. (Un-
published data collected in TM laboratory). Maximal concentrations 
were calculated from amperograms presented in Figure 1.
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