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Introduction

 The Coronavirus Disease 2019 (COVID-19) triggered a 
global health crisis in 2020, leading to an immense loss of life 
and overwhelming healthcare systems worldwide. Despite the 
widespread vaccination efforts that have significantly mitigated 
the spread of the virus, the emergence of new variants and 
fluctuating case numbers underscore the need for rapid and 
accurate screening methods to ensure public health safety [1]. 
Even in the post-vaccination era, fast and reliable screening re-

Abstract

Besides vaccination, as a highly effective method to miti-
gate the spread of COVID-19, fast and ac- curate screening 
of individuals remains crucial to ensuring public health safe-
ty, especially in high-risk or resource-limited environments. 
To address this need, we propose COVID-Net UV, an end-to-
end hybrid spatiotemporal deep neural network architec-
ture, to detect COVID-19 infection from lung point-of-care 
ultrasound videos captured by convex transducers. COVID-
Net UV comprises a convolutional neural network that ex-
tracts spatial features and a recurrent neural network that 
learns temporal dependence. This hybrid approach enabled 
the network to accurately capture subtle patterns in lung 
dynamics associated with COVID-19. Through extensive ex-
perimentation and hyper parameter tuning, the network 
achieves a high average accuracy of 94.44%, with the critical 
advantage of producing no false-negative cases. This ensures 
that the model minimizes the risk of missed diagnoses, a 
crucial factor in controlling the spread of the virus. The goal 
of this work is to provide a robust tool to assist healthcare 
professionals in screening for COVID-19, supporting faster 
decision-making and improving patient outcomes through 
early detection. Ultimately, COVID-Net UV demonstrates 
the potential of combining deep learning with medical im-
aging to develop practical, life-saving diagnostic tools.

mains a cornerstone in the management of COVID-19, playing 
a vital role in early detection, patient isolation, and prevention 
of outbreaks, particularly in high-risk resource-limited environ-
ments. In other words, ensuring public health safety hinges on 
the availability of fast, reliable, and widely accessible diagnostic 
tools. Traditionally, Chest X-Ray (CXR) and Computed Tomogra-
phy (CT) have been among the primary imaging modalities used 
to diagnose COVID-19 infections [2]. These modalities provide 
detailed images invaluable in diagnosing respiratory conditions, 
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including those caused by COVID-19. However, both modalities 
are not without limitations. CT scans, for example, while accu-
rate, involve significant

exposure to ionizing radiation and are costly. Furthermore, 
CT and CXR machines are often confined to well-equipped med-
ical centers, limiting their accessibility in rural, low-resource, or 
overburdened healthcare environments [3,4]. In contrast, lung 
Point-Of-Care Ultrasound (POCUS) has emerged as a valuable 
alternative imaging modality for diagnosing lung-related diseas-
es, including COVID-19. POCUS offers several advantages over 
conventional imaging methods, particularly in resource-limited 
or emergency settings [1]. POCUS is non-invasive, portable, and 
cost-effective, making it ideal for use in a variety of clinical en-
vironments, including those where access to advanced imaging 
technologies like CT is restricted, e.g, widespread COVID-19 
screening and diagnosis [5]. Its portability allows clinicians to 
perform bedside examinations, providing immediate diagnos-
tic information and minimizing the need for patient transport, 
which can be both risky and time- consuming, especially in 
critically ill patients. Given these strengths, POCUS is becom-
ing increasingly utilized for diagnosing lung-related diseases, 
including COVID-19 [1-6], enabling real-time decision-making in 
critical care situations. However, one of the main challenges in 
using POCUS for COVID-19 diagnosis lies in the interpretation 
of the ultrasound video sequences. The standard protocol for 
lung ultrasound examinations involves capturing multiple video 
sequences from various positions and angles around the chest 
[1-7], ensuring a comprehensive assessment of the patient’s 
condition. While this approach increases diagnostic reliability, it 
also introduces complexity, as not all frames in these videos will 
contain relevant diagnostic information. Manual interpretation 
of these video sequences requires significant domain expertise 
and is often labor-intensive, leading to variability in diagnosis 
accuracy. This creates a need for automated approaches that 
can assist in interpreting POCUS video data, reducing the cogni-
tive load on clinicians while ensuring consistent and accurate re-
sults. The application of Deep Learning (DL) networks to POCUS 
images has shown great promise in automating various tasks 
such as segmentation, disease classification, and detection [8]. 
These models can extract meaningful patterns from medical im-
ages, potentially outperforming traditional rule-based systems, 
especially when trained on large, well-curated datasets. These 
advanced models have the potential to enhance diagnostic ac-
curacy and efficiency, particularly in settings where expert in-
terpretation is not readily available. Existing models for POCUS-
based COVID-19 diagnosis often focus on analyzing individual 
frames (e.g., [1-9]), neglecting the temporal context inherent 
in video data. Given that not all frames in an ultrasound video 
sequence may contain signs of suspected disease, analyzing 
individual frames without considering their temporal context 
may lead to sub-optimal diagnostic outcomes. The temporal 
information embedded in the video sequences is critical for un-
derstanding the progression of the disease and capturing subtle 
changes that might be missed in single-frame analysis. There-
fore, the challenge lies in developing DL architectures that can 
effectively combine both spatial and temporal features present 
in POCUS videos for robust diagnostic performance. Motivated 
by this challenge, we propose COVID-Net UV, an end-to-end 
spatio-temporal deep neural network architecture explicitly de-
signed to detect COVID-19-positive cases from POCUS video se-
quences. COVID-Net UV capitalizes on the full range of informa-
tion available in POCUS videos by integrating both spatial and 
temporal data to enhance diagnostic accuracy. This approach 

not only improves the reliability of detecting COVID-19-positive 
cases but also offers a scalable solution that can be deployed 
in diverse healthcare settings, including those with limited re-
sources. The key contributions of our work can be summarized 
as follows.

Automated COVID-19 screening: COVID-Net UV serves as an 
effective tool for the automatic detection of COVID-19-positive 
cases from POCUS video sequences, eliminating the need for 
technician intervention and additional processing steps. This 
can enable faster, real-time diagnostic support for front-line 
healthcare workers.

Spatio-Temporal learning: Unlike previous approaches that 
analyze single frames, COVID-Net UV captures both spatial and 
temporal patterns from video data, leading to more compre-
hensive and accurate diagnoses. The model learns to detect 
subtle temporal dynamics, such as the progression of lung in-
flammation, which may be missed in frame-by-frame analysis.

Complementary to human experts: The proposed model ad-
dresses a critical gap in current diagnostic practices by reducing 
the reliance on time-consuming and costly training of human 
experts to interpret ultrasound data which typically requires ex-
tensive domain knowledge [10]. COVID-Net UV.

Figure 1: COVID-Net UV: A CNN-RNN architecture to classify 
POCUS videos into two classes of positive i.e, COVID-19 infection, 
and negative i.e, pneumonia or normal.

Automates the diagnostic process, making it accessible to cli-
nicians with varying levels of experience, thereby expanding its 
utility across a wide range of healthcare environments. By inte-
grating cutting-edge spatio-temporal deep learning techniques 
with POCUS imaging, COVID-Net UV has the potential to signifi-
cantly enhance the diagnostic process, making it more accessi-
ble, efficient, and accurate in screening and detecting COVID-19 
infection. This work demonstrates the promise of leveraging AI 
to develop practical, scalable solutions for public health crises, 
particularly in the context of fast-moving pandemics.

The Remainder of this paper is structured as follows: In Sec-
tion 2, we provide an overview of related work, highlighting 
current advancements in deep learning for medical imaging, 
specifically in the context of COVID-19 detection using POCUS 
and other modalities. Section 3 describes the architecture of 
COVID- Net UV in detail, and the dataset used for the analy-
ses. Section 4 presents the results of our experiments. Finally, 
in Section 5, we conclude the paper with a discussion of our 
findings, the potential implications for clinical practice, and di-
rections for future work.

Related work: The application of deep learning to lung PO-
CUS for COVID-19 diagnosis has garnered significant attention in 
recent years. Several studies have proposed DL models, aiming 
to enhance the accuracy and efficiency of automated diagnosis. 
While these efforts have contributed valuable insights, they also 
face notable challenges, including limitations related to datas-
ets, model complexity, and generalizability. Dastider et al. intro-
duced a hybrid CNN-LSTM model to predict COVID-19 severity 
from Lung Ultrasound (LUS) videos [11]. The model effectively 



3

MedDocs Publishers

Journal of Clinical Images

combines spatial features from a CNN with temporal features 
captured by LSTM layers, leading to improved classification ac-
curacy. However, the study was constrained by a small dataset 
of only 60 LUS videos, significantly limiting the generalizability 
of their model. Additionally, while the model captures temporal 
features, its initial frame-based analysis could miss key dynam-
ics present across the video sequence, potentially reducing its 
effectiveness in complex clinical scenarios that require a holistic 
temporal understanding of lung changes. Moreover, the incor-
poration of multiple components, such as autoencoders and 
separable convolutions, also raises concerns about overfitting 
due to the limited size of the dataset. In a similar vein, Barros et 
al. proposed a hybrid model combining CNNs and LSTMs to clas-
sify LUS videos of COVID-19 patients [12]. Their model achieved 
high accuracy and sensitivity, demonstrating the benefits of in-
tegrating spatial and temporal features. However, the small and 
specific dataset used in the study may pose a challenge to the 
broader applicability of the model across diverse populations 
and clinical settings. Furthermore, the complexity of the model, 
along with the computational demands of preprocessing and 
hyper parameter optimization, restricts its use in real-time clini-
cal settings, which demands faster and more streamlined solu-
tions for deployment. Utilized [13] the two-stream Inflated 3D 
ConvNet (I3D) architecture to detect pneumonia in LUS videos, 
focusing on the identification of clinical markers such as A-lines, 
B-lines, and consolidations. Their approach achieved high ac-
curacy and precision. However, the requirement for optical 
flow extraction adds significant preprocessing complexity, po-
tentially limiting the model’s practicality in real-time settings. 
Additionally, variations in data capture quality and differences 
in imaging devices affect the model’s generalizability. Handling 
transitional cases-where multiple features coexist-also remains 
a challenge. Roy et al. [14] took a different approach by explor-
ing deep learning models for classifying and localizing COVID-19 
markers in LUS images, introducing novel architectures such as 
Spatial Transformer Networks (STN). While their models per-
formed well in classifying COVID-19-specific lung patterns, the 
added architectural complexity increased the risk of overfitting. 
This was especially problematic given the study’s limited and 
specific dataset, which was collected from a few hospitals in 
Italy. Additionally, the dataset contained noisy and subjective 
labels, further complicating the training process and affecting 
model performance. This limited geographical and institutional 
scope of the dataset raised concerns about the model’s general-
izability to broader and more diverse populations. In two recent 
studies, researchers further explored the use of deep learning 
for COVID-19 diagnosis through POCUS imaging. In one study, 
a framework called COVID-Net L2C-ULTRA [15] was developed 
to handle the heterogeneity of POCUS data captured by differ-
ent probes (e.g., convex and linear). By employing an extended 
linear-convex ultrasound augmentation learning approach, this 
model improved test accuracy by 3.9% and demonstrated sig-
nificant performance gains in recall and precision when trained 
on combined datasets, enhancing the utility of both convex and 
linear probe images. Another study introduced COVID- Net US-
Pro [16], an explainable few-shot deep prototypical network 
that excels in diagnosing COVID-19 from very limited ultrasound 
data. Trained on five shots, the model achieved over 99% accu-
racy, recall, and precision, making it highly effective even with 
small datasets. These frameworks highlight the potential of 
artificial intelligence in accelerating COVID-19 diagnosis. How-
ever, both models were built on LUS images, rather than vid-
eos, limiting their ability to capture temporal dynamics. While 
these studies represent important strides in the development 

of DL-based approaches for COVID-19 detection using LUS, they 
highlight several challenges such as small and specialized datas-
ets, the complexity of models, and the need for significant pre-
processing, all of which can impede real-world deployment. In 
an aim to address these challenges and limitations, we propose 
COVID-Net UV, a streamlined, end-to-end spatio-temporal deep 
neural network tailored for robust COVID-19 detection from 
POCUS videos. Unlike prior models, COVID-Net UV is designed 
to minimize preprocessing steps and focus on efficiently cap-
turing both spatial and temporal dependencies in POCUS video 
sequences. These properties make it well-suited for real-time 
clinical use, particularly in diverse and resource-limited settings. 
Furthermore, the use of a larger, more diverse dataset enhanc-
es the model’s robustness, generalizability, and applicability in a 
variety of healthcare environments, improving its potential for 
widespread clinical adoption.

Data and methods

Data: To train and evaluate the COVID-Net UV, we used the 
COVIDx-US dataset v1.4. [17], a comprehensive collection of 
242 LUS videos curated and integrated from nine distinct data 
sources. These videos represent four primary classes: COVID-19 
infection, non-COVID-19 infection, other lung diseases/condi-
tions, and normal control cases. We filtered out the other class, 
i.e., other lung diseases/conditions, due to the het- erogeneity of 
the cases to enhance model focus and performance. Moreover, 
to maintain consistency in the imaging modality, we restricted 
our dataset to videos captured solely with convex transducers, 
as different probe types may yield different image characteris-
tics, complicating the training process. We formulated the prob-
lem as a binary classification task, wherein cases of COVID-19 
infection were Iabeled as positive, and both non-COVID-19 in-
fections and normal control cases were grouped and labeled 
as negative. This approach ensured a clear distinction between 
COVID-19-positive cases and all other types of lung conditions 
or normal lung health. Following these filtering steps, the final 
dataset consisted of 119 videos: 60 COVID-19-positive cases 
and 59 negative cases (including both non-COVID-19 infections 
and normal controls). The dataset was split into three subsets 
for training, validation, and testing, as follows:

Training set: 76 videos (38 positives and 38 negatives).

Validation set: 25 videos (12 positives and 13 negatives).

Unseen test set: 18 videos (10 positives and 8 negatives).

Model architecture: For the model architecture, we em-
ployed a hybrid deep learning model that included convolution-
al and recurrent layers, capable of processing both spatial and 
temporal dimensions of the POCUS videos, respec- tively (see 
Figure 1). Specifically, we adopted the InceptionV3 model, pre-
trained on the ImageNet data set [18], as the backbone for spa-
tial feature extraction. To process the temporal dynamics within 
the video sequences, we added 2 Gated Recurrent Unit (GRU) 
layers to the network. GRUs are lightweight variants of LSTM 
networks and offer the advantage of being computationally less 
expensive while retaining the ability to capture long-term de-
pendencies [19]. This design allows the network to jointly learn 
both spatial features (From individual frames) and temporal 
patterns (from the ordered sequence of frames).

Data preprocessing: Since a video is an ordered sequence 
of frames, the frames can be extracted and placed on a 3D ten-
sor. However, a key challenge in processing video data is the 
variability in the number of frames across different videos. This 
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variability complicates batch processing, as it is necessary for 
the input data to have consistent dimensions. To address this, 
we employed the following preprocessing steps.

Frame extraction: Frames were first extracted from each 
video to form an ordered sequence. How- ever, the number of 
frames varied between videos, necessitating further prepro-
cessing.

Frame truncation and padding: We set a maximum frame 
count of 60, based on the distribution of frame lengths in the 
dataset. For videos with fewer than 60 frames, we padded the 
sequence with zeros to standardize the input size. For videos 
exceeding 60 frames, we truncated the sequence to retain only 
the first 60 frames. This choice balances computational efficien-
cy with the need to capture adequate temporal information for 
classification. The resulting 60-frame sequences were stacked 
into 3D tensors to serve as input to the model. Each tensor con-
sisted of the video’s spatial information, distributed across the 
frame sequence.

Training strategy: We adopted several techniques to opti-
mize the training process and avoid overfitting.

Learning rate scheduler: We applied a learning rate decay 
strategy, reducing the learning rate by a factor of 0.5 whenever 
the validation loss plateaued for three consecutive epochs. This 
helps in fine-tuning the network and finding an optimal set of 
weights without overshooting.

Early stopping: To prevent overfitting and unnecessary com-
putation, we employed an early stop- ping mechanism, halting 
the training process after seven consecutive epochs without 
improvement in validation performance. This ensures that the 
model does not overfit the training data by continuing to train 
beyond the point of optimal generalization. The network’s ini-
tial learning rate was set to 0.001, and the maximum number 
of training epochs was set to 30. However, following the early 
stopping criterion, training was completed after 18 epochs.

Table 1: Performance of COVID-Net UV on the unseen test 
dataset.

Class Precision  recall f1-score

Negative 1.0000 0.8750 0.9333

Positive 0.9091 1.0000 0.9524

Figure 2: Learning curves through the process of training and 
optimizing the network. (a) Accuracy, (b) Loss and (c) Learning rate.

Evaluation metrics: To evaluate the performance of COVID-
Net UV, we employed several standard classification metrics, in-
cluding accuracy, precision, recall, and F1 score. These metrics 
were calculated on both the validation and test sets, providing 
a robust assessment of the model’s generalization capabilities.

Results

The learning curves through the process of training and op-
timizing the network are illustrated in Figure 2. To mitigate the 
risk of overfitting, we carefully monitored the validation loss 
and applied early stopping once the validation loss stopped de-
creasing. Specifically, training was stopped just before the vali-
dation loss began to rise, ensuring the model captured the criti-
cal patterns without overfitting to the training data (Figure 2-b). 
Following the learning rate scheduler strategy, during the pro-
cess of training, the learning rate was decayed twice at epochs 
15 and 18, which allowed for finer weight adjustments during 
the later stages of training. The COVID-Net UV model demon-
strated robust classification performance, achieving an overall 
accuracy of 94.44% across both classes, see Table 1. The net-
work’s ability to correctly classify COVID-19-positive cases was 
particularly notable, with a sensitivity (recall) of 100%, meaning 
that the model produced no false negatives. This is crucial for 
clinical applications, as minimizing false negatives is essential 
in preventing missed diagnoses of COVID-19-positive patients. 
For the negative class (which included non-COVID-19 infections 
and normal cases), the sensitivity was 87.50%, reflecting the 
model’s ability to correctly identify the absence of COVID-19 in 
most cases. In terms of precision, the model achieved a high 
score of 90.91% for the positive class, indicating that the major-
ity of cases identified as COVID-19-positive were indeed true 
positives. The precision for the negative class was even higher, 
at 100%, signifying that the model perfectly identified all true 
negative cases without any false positives. This performance 
highlights the model’s effectiveness in balancing sensitivity and 
precision, ensuring both accurate detection of COVID-19 cases 
and minimal misclassification of non-COVID cases.

Discussion

In this work, we introduced COVID-Net UV, a end-to-end 
hybrid neural network architecture designed to classify lung 
POCUS videos for the diagnosis of COVID-19. The network inte-
grates two key components: the pre-trained InceptionV3 to ex-
tract spatial features from video frames, and an RNN with GRU 
units to capture the temporal dependencies between video 
frames. The hybrid architecture, by combining spatial and tem-
poral analysis, was tailored to extract rich information from lung 
ultrasound videos, enhancing the accuracy of COVID-19 diag-
nosis. Our results demonstrated that COVID-Net UV achieved a 
sensitivity of 100% for COVID-19 cases with no false-negatives, 
significantly outperforming human experts, who achieved a 
sensitivity of 86.4% [20]. Furthermore, compared to models 
relying solely on spatial architecture (with the highest accura-
cy of 83.2%) [21], our approach demonstrated the benefits of 
incorporating temporal dynamics in clinical video-based diag-
nosis. The importance of fast and accurate COVID-19 diagnosis 
cannot be overstated, particularly in the context of pandemic 
preparedness and response. While various diagnostic methods, 
such as RT-PCR, chest X-ray, and CT scans, have proven effective, 
they are resource-intensive and require access to specialized 
laboratories and equipment. In contrast, lung POCUS provides a 
more accessible, portable, and cost-effective alternative, partic-
ularly in resource-limited and remote settings where access to 
advanced imaging technology may be scarce. However, the ac-
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curate interpretation of POCUS images and videos is often con-
tingent on the experience of the clinician, which can vary sig-
nificantly. This is where COVID-Net UV can play a transformative 
role by providing an AI-assisted diagnostic tool that augments 
clinical decision-making and ensures consistent, objective, and 
reliable results across different healthcare settings. Due to the 
mentioned advantages, POCUS can be widely used in resource-
limited and remote regions, and incorporating AI-based tools 
like COVID-Net UV can significantly enhance diagnostic capabili-
ties in these settings. By enabling rapid and accurate identifica-
tion of COVID-19 cases through POCUS, healthcare providers in 
under-resourced regions can make more informed decisions, 
allocate resources more efficiently, and prioritize treatment for 
patients with COVID-19, all of which are critical in mitigating the 
impact of the pandemic. COVID-Net UV’s flexible architecture 
also makes it well-suited for adaptation to future pandemics 
and the detection of rare diseases that may emerge. By retrain-
ing the model with new data, it could be rapidly repurposed for 
identifying novel respiratory illnesses or other emerging patho-
gens, providing a crucial tool in the global response to health 
crises. Its ability to work with POCUS videos also means that 
the model can support diagnosis in challenging clinical environ-
ments where new diseases may spread, ensuring timely detec-
tion and intervention. While the results of COVID-Net UV are 
promising, we acknowledge the limitations posed by the rela-
tively small size of the video dataset used in this study, compris-
ing 119 POCUS videos. Although the model performs well on 
the available data, there is a need to validate its generalizability 
across larger and more diverse datasets. However, we believe 
our proposed methodology and results are the desired base-
line for our future work in examining more complex models on 
the larger POCUS video dataset. Our future work will focus on 
expanding the dataset by integrating more video samples from 
different regions, patient demo- graphics, and device types to 
further ensure the model’s robustness and applicability across 
various clinical settings. Furthermore, we plan to explore the 
model’s potential for multi-class classification by including addi-
tional lung diseases beyond COVID-19. This will make the model 
more versatile and applicable to a broader range of clinical sce-
narios. The architecture of COVID-Net UV is designed to be flex-
ible and easily adaptable, allowing for the integration of new 
disease categories as more data becomes available. As such, the 
model can be retrained to classify not just COVID-19 but also 
other common lung pathologies.
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