Smartphone Technique for Fundoscopy, Step by Step

Robinson Barrientos1; Fernando Godin2; Eduardo Cadena3; Ana Luisa Gonzalez MD4; Maria Adelaida Piedrahita3*; Maria Andrea Estevez-Florez2; Claudia Valentina Jimenez2

1Department Of Ophthalmology, Instituto de la visión, Quevedo, Ecuador.
2Department Of Ophthalmology, Universidad El Bosque, Bogotá D.C, Colombia . Grupo de investigación Salud Visual y Ocular Unbosque
3Department Of Ophthalmology, Universidad El Bosque, Bogotá D.C, Colombia.
4Department of Ophthalmology, Research Department Clínica La Luz, Lima-Peru.
5School of Medicine, Universidad El Bosque, Bogotá D.C, Colombia.

*Corresponding Authors: Maria Adelaida Piedrahita
Department Of Ophthalmology, Universidad El Bosque, Bogotá D.C, Colombia.
Tel: +57-3103792275; Email: mapipiedrahita@gmail.com

Received: Dec 16, 2022
Accepted: Jan 07, 2023
Published Online: Jan 09, 2023
Publisher: MedDocs Publishers LLC
Online edition: http://meddocsonline.org/
Copyright: © Maria Adelaida P (2023). This Article is distributed under the terms of Creative Commons Attribution 4.0 International License

Keywords: Retinal imaging; Fundoscopy; Smartphone; Photography; Ophthalmology.

Introduction

The use of smartphones in fundus imaging is becoming an increasingly powerful clinical tool [1].

The simplest and least costly way to obtain fundus images in the office requires using a smartphone and an indirect ophthalmoscopy lens in patients with dilated pupils. As a potentially affordable instrument that is easier to use than other conventional methods, it is an excellent advantage for clinical practice and has a screen that allows it to be used as a teaching aid for students and explanation to patients during the consultation [2].

Abstract

Objective: To describe a relatively simple technique for fundus photography in humans using a smartphone and an indirect ophthalmoscopy lens.

Methods: Fundus images were captured using smartphones (iPhone and android) and a 2.2 mm, 20 D, or 28D Pan retinal® lens. Using the phone’s light source, this system functions as an indirect ophthalmoscope that creates a digital image of the fundus. We record high-definition videos of the fundus and subsequently extract high-quality images.

Results: The described technique of smartphone fundus photography captured excellent high-quality fundus images in children and adults.

Conclusion: Fundus photography with a smartphone is an inexpensive, portable, safe, fast and convenient method to obtain retinal images during the consultation, which can be attached to the medical record for follow-up of different pathologies and academic purposes.

We present a technique for fundus imaging using smartphones. It’s aimed at medical students, ophthalmology residents, and ophthalmologists.

Methods

Tools

1) Drops ophthalmic: Tropicamide + phenylephrine for pupillary dilation.
2) Smartphone (Google’s Android or Apple iOS).

3) Indirect ophthalmoscopy lens: 20 D, 28 D, 2.2 mm Pan retinal.

4) A dim light room [3-5].

**Technique**

Photography and videography techniques are simple but may require a few attempts to master. The step-by-step procedure for obtaining the images is described as follows:

1. The patient should be seated and reclined while the examiner stands. (Figure 1 A and B).
2. Set the smartphone to video mode, flash on, and maximum screen brightness.
3. Hold the indirect ophthalmoscopy lens about 5 cm (2 inches) from the patient’s cornea. Maintain the lens position with the 4th and 5th fingers of your non-dominant hand.
4. Hold the smartphone about 35 to 40 cm from the indirect ophthalmoscopy lens (Remember to align the phone’s light source with the lens and posterior pole) (Figure 1 C-E).
5. Adjust the video zoom 2x, 2.5x or 3x, depending on the type of smartphone after having the image located for higher quality.
6. To take pictures, a screenshot of the video should be taken (Figure 2).

**Settings**

**WHAT PARAMETERS DOES IT HAVE?**

**Tips or Suggestions:** We provide a tutorial on the technique of fundus photography and videography using a smartphone for ophthalmologists, ophthalmology residents and medical students who don’t have inexperienced in indirect ophthalmoscopy [9-11].
Discussion

A study compared the quality of fundus images taken by a smartphone and by fundus cameras, where no significant difference was found. Additionally, it is stated that image quality improves when experienced examiners take images compared to inexperienced examiners [8,10].

The technique used for fundus photography with smartphones is a safe, simple, and fast technique. However, it can present degrees of difficulty at the beginning. Mastering the technique requires practice. The inexperienced examiner must focus on coordinating the hands performing the video, lens, phone alignment, and the indirect ophthalmoscopy lens [12].

Current smartphone light sources are not harmful to human eyes. This is safe for photography and videography without causing retinal damage. However, it can be uncomfortable for the patient, so a short time of minutes is required to perform the exam [11].

Most smartphones do not adjust the light intensity in video mode, so tapping over the light source or using apps to adjust the light intensity is recommended. This is optional for taking photographs and depends on the taste of each examiner [4,12].

Kim et al. [13] conducted a study where they measured the light intensity of a conventional smartphone, describing that the light levels from a smartphone light source were 150 times below the limit set by the International Organization for Standardization (ISO 15004-2.2) for ocular thermal hazard and 240 times below those limits for photochemical hazard [9]. Although light intensity and energy have not been measured on other smartphone models, it is suggested that they may be well below the hazard limits [11].

These photographs have a limited field of images, and wide-field imaging can be time-consuming.

Informed consent should be obtained from the patient or the minor’s guardian if there is an intention to publish the images for academic purposes or social networking.

Conclusion

The smartphone fundus photography technique is simple, affordable, and has a short learning curve, allowing rapid mastery. It can be helpful for the rapid acquisition of fundus images in a practical way, which can be attached to the medical record for control and follow-up of various pathologies. They can also be used for academic and scientific use.

Acknowledgments

We want to thank the students of the optometry group of Universidad El Bosque and Dr. Diana Rey.

References