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Introduction

Through the unique process of photon transduction in reti-
nal photoreceptors, along with the associated synaptic activ-
ity of the other retinal neurons, optical radiation (i.e., light) is 
transformed into electrical signals and perceived by our visual 
association cortex, while the optical structures of the eye func-
tion as analogues of camera parts [1-3]. Excessive radiation or 
high-energy radiation, however, is potent in inducing DNA dam-
age and post-translational modification of proteins [4-6]. Exam-
ples include solar retinopathy caused by excessive sun gazing or 
even from reflected light from snow or sand, as well as radio-
therapy incurred or cosmic rays-induced blindness [7-10]. In this 
respect, it is important to know the differential photo- and ra-
dio-sensitivity of various types of ocular cells for preventing and 

repairing radiation-induced oculopathy. This review focused on 
mechanistic descriptions of how radiation induces lens opacifi-
cation and retinopathy apart from the structural complexity and 
cellular plasticity of the ocular system.

Radiation-induced insults 

DNA damage

Radiation-induced reactive oxygen species can result in 
DNA breakage, cross-links, and nucleotide modification, which 
require DNA repair pathways, including homologous recombi-
nation, non-homologous end joining, and nucleotide excision 
repair [4, 11-15]. Generally, radiation-induced double-stranded 
breaks in proliferative cells are predominantly repaired through 
homologous recombination when cell cycle propagates through 
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the DNA synthetic phase [16]. If DNA damage remains unre-
paired, proliferating cells will be rendered apoptotic due to the 
failure of accomplishing cell mitosis [17]. 

Radiation-induced protein malfunction

The denucleation of lens fiber cells, essential for the mainte-
nance of lens clarity, is mediated through the activity of DNases 
that readily cleaves DNA and hence degrade nuclei. If this pro-
cess is stalled then cataract is induced following cell differen-
tiation defects [18]. Excessive light exposure of retina induces 
protein oxidation and polyubiquitination and renders cells 
apoptotic [19,20]. The radiation-induced impairment in protein 
degradation can lead to lenticular and retinal degeneration as 
well as vision loss. 

Cell radio sensitivity 

Responses of ocular tissues to radiation are associated with 
the turnover rates and differentiation levels of cells [21-23]. 
The higher a tissue turnover rate is, the less tissue function 
is impaired after irradiation. While most of the ocular tissues 
are constituted of differentiating intermitotic cells and present 
moderate radio sensitivity [22,24-26], radiation-induced lens 
opacification, which underlies high radio sensitivity of the lens 
itself, is different than the effect of cell killing.

Dividing cells 

Studies have shown that the Lens Epithelial Cells (LECs) and 
retinal neuroblasts are more proliferative and less differentiat-
ed than lens fiber and retinal neurons, respectively [27,28]. The 
high turnover rates of LECs render them susceptible to radia-
tion-induced DNA damage [29]. In the development of cataracts 
after cell exposure to ionizing radiation, LECs uncontrollably 
proliferate and migrate to the posterior pole of the lens on 
the anterior surface of the posterior capsule [30]. Studies have 
shown that radiation revokes contact inhibition and promotes 
FGF-2-triggered lens fiber cell differentiation through Wnt sig-
naling [31-33]. Radiogenic oxidative stress and DNA double-
strand breaks can cause LECs migration backward to the poste-
rior capsule, leading to hindrance of light penetration (posterior 
subcapsular opacification) [34, 35]. Therefore, the control of 
cell expansion and migration becomes critical to the mitigation 
of radiation cataractogenesis. It is proposed that chemo attrac-
tant receptors of LECs, such as IGF (insulin-like growth factor) 
and TGF-β (transforming growth factor) receptors, are activated 
by radiation and mediate cell migration toward the source of 
attractants [36]. 

Lower dose radiation kills retinal neuroblasts and affects vi-
sual function; higher dose exposure induces loss of epithelial 
cells and pericytes in the capillaries of the retina, leading to 
micro infarcts and lack of perfusion [9]. Radiation treatment 
for tumors in the eye, orbit, paranasal sinuses and cranial fos-
sa usually results in occlusive vasculopathy, leading to retinal 
edema, exudates and vision loss [37,38]. Radiation damage to 
retinal vascular endothelial cells is believed to initiate the de-
velopment of radiation retinopathy due to the role of the cir-
culation in supplying nutrients and oxygen to the metabolically 
active retina as well as protecting retina from molecular toxins, 
microorganisms, and pro-inflammatory leukocytes [39,40]. To 
reduce the risk of retinopathy following radiation therapy, the 
accepted upper limit of safe total absorbed dose for radiation 
retinopathy is 30 Gy [41]. 

Researchers have found that radiation retinopathy is associ-

ated with VEGF production [37,39]. The reduction of VEGF in-
hibits neovascularization, decreases vascular permeability and 
maintains visual acuity. Additional risk factors for developing 
radiation retinopathy include short tumor distance from the op-
tic nerve, preexisting diabetes mellitus, and young age. On the 
other hand, retinal stem cells reveal radio resistance through 
Notch and WNT signaling [42,43]. Radiation-induced resistance 
has been observed in fetal mouse retinal explants [44]. The ra-
dio resistance was larger when the dose of radiation was re-
duced and when being exposed at later times, indicating a cor-
relation between cell radio resistance and radiation dose rate 
or age [44,45]. 

Non-dividing cells

Lens fiber cells at higher differentiation levels have no mitotic 
functions and require very large doses to result in catastrophic 
cell death. Nevertheless, radiation doses at smaller amounts 
are readily capable of resulting in irrecoverable cellular dam-
age in lens fiber cells that causes cataractogenesis [34]. The de-
formation of crystallins, for example, induces cross linking and 
disrupts the tight packing of fiber cells, resulting in cataractous 
opacities [38]. Diabetes exacerbates radiation-induced cataract 
by stalling the metabolic pathway of blood sugar [46]. Studies 
have shown that glucose can be converted to sorbitol in the lens 
and forms sorbitol aggregates under the deficiency ofα-crystallin 
[47,48]. When lenticular α-crystallingets deformed by radiation 
[49], its protective effect on sorbitol dehydrogenase weakens, 
leading to inefficient conversion of sorbitol into fructose [47]. In 
addition, higher blood sugar causes damage to blood vessels in 
the retina and exacerbates the effect of radiation-induced ves-
sel damage.  

Similar to diabetes-associated metabolic stress, radiation-in-
duced water ionization increases generation of superoxide and 
other reactive oxygen species in the retina, leading to vascular 
lesions and retinopathy [48]. Studies have shown that highly 
metabolic photoreceptor cells, cones and rods, can potenti-
ate diabetic retinopathy through the induction of hypoxia and 
oxidative stress [50]. Nevertheless, it remains unclear whether 
photoreceptors play a role in radiation retinopathy. Research-
ers have shown that retinal degeneration is associated with 
rhodopsin-induced stress signaling and inflammation in photo-
receptors [51]. 

Promotion and mitigation of cell radiosensitivity

Smoking increases cataract formation via two mechanisms. 
First, smoke-containing chemicals, including arsenic, lead, car-
bon monoxide and hydrogen cyanide, neutralize reductants 
that counteract oxidation. Secondly, oxidative stress emerges 
within the lens via the absorption and accumulation of smoke-
containing chemicals [46]. 

Oxygen levels, on the other hand, are highly associated with 
radiation-induced free radicals, which damage lenticular fibers 
and decrease the membrane’s ability to transport certain ions. 
In addition, radiation-induced hydroxyl radicals can further es-
calate vascular activity and exacerbate radiation-induced dam-
age to retinal capillaries [52]. 

To decrease the interaction of singlet oxygen (or superoxide 
ion) with cellular components through photochemical reac-
tions, free radical scavengers, such as vitamin C, sodium a zide 
and superoxide dismutase may be employed [53]. Recently, 
the administration of bone-marrow-derived mesenchymal 
stem cells into neuroretinal tissues has shown some potential 
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Figure 1 : Schematic diagram showing that radiation elicits 
apoptosis and blocks the formation of retinal neurons for inhibit-
ing retinopathy evoked by radiation-induced damage on retinal 
vascular endothelial cells. The yellow highlighted action is associ-
ated with diabetic vasculopathy.

for healing laser-induced retinal injury partially through down-
regulation of monocyte chemotactic protein-1 [54]. In addition, 
intramuscular injection of adherent human placental stromal 
cells effectively recovered the hematopoietic system following 
total body irradiation of mice [55]. These observations suggest 
that stem cell-derived interventions may lead to an effective, 
versatile treatment for radiation retinopathy.

Summary

The ocular toxicity of various ionizing and non-ionizing radia-
tion can be exacerbated by diabetes ordiabetic vasculopathy. 
The following figures recapitulate this point (Figures 1, 2).

Figures

Figure 2 : Schematic diagram showing that radiation elicits 
cataractogenesis through different mechanisms on lens epithelial 
cells or/ and lens fibers. The yellow highlighted action is associ-
ated with diabetics. 
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