
 

Screening for Incidental Sars-Cov-2 Infection in a 
Neurocritical Care Unit: A Longitudinal 

Diagnostic Prediction Model

1

MedDocs Publishers

Received: Nov 17, 2022
Accepted: Dec 06, 2022
Published Online: Dec 08, 2022
Journal: Annals of Epidemiology and Public health
Publisher: MedDocs Publishers LLC
Online edition: http://meddocsonline.org/
Copyright: © Willms J (2022). This Article is
distributed under the terms of Creative Commons 
Attribution 4.0 International License

*Corresponding Author(s): Jan Willms
Institute of Intensive Care Medicine, University Hospital 
Zurich, Switzerland. 
Email: janfolkard.willms@usz.ch

Cite this article: Boss J, Willms J, Bühler Pk, Ganter C, David S, et al. Screening for Incidental Sars-Cov-2 Infection in a 
Neurocritical Care Unit: A Longitudinal Diagnostic Prediction Model. A Epidemiol Public Health. 2022; 5(2): 1094.

Annals of Epidemiology & Public Health

Open Access | Research Article

ISSN: 2639-4391

Jens Boss1 ⴕ; Jan Willms2*ⴕ; Philipp Karl Bühler2; Christoph Ganter2; Sascha David2; Peter Steiger2; Giovanna Brandi2; Marko 
Seric1; Daniel Baumann1; Emanuela Keller1

1Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, University Hospital Zurich,
Switzerland.
2Institute of Intensive Care Medicine, University Hospital Zurich, Switzerland.
ⴕShared first authorship

Abstract

Background: Rapid diagnosis of SARS-CoV-2 infection in 
patients not primarily assigned with the diagnosis of COV-
ID-19 is highly relevant to effectively rule out virus transmis-
sion among patients and medical staff. 

The purpose is to develop a model for the prediction of 
the actual presence of a SARS-CoV-2 infection before a valid 
test result is available and to avoid unnecessary testing in 
Critical Care Units.

Methods: Datasets of laboratory and blood gas analysis 
tests were collected retrospectively for the development 
and subsequent validation of machine learning (ML) based 
models. The data set was composed of 1. 254 SARS-CoV-2 
positive cases, collected in an ICU dedicated to patients 
with COVID-19 pneumonia, 2a. 914 SARS-CoV-2 negative 
patients treated in a Neurocritical Care Unit and 2b. 32 pa-
tients treated for severe influenza pneumonia in a Medical 
ICU at the same hospital. The models were subsequently 
validated on a dataset collected from the Neurocritical Care 
Unit that consisted of data from 7 positive and 42 negative 
patients. Models were adapted to newly available laborato-
ry values throughout their ICU stay. Extremely Randomized 
Trees (ERT) and Random Forest (RF) models were evaluated. 
A baseline model comprising fully grown trees, an optimized 
model including optimal values for the maximum depth, 
and a simplified model that only uses the 6 most important 
features were trained.
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Introduction

During the COVID-19 pandemic, the health care system is fac-
ing extraordinary challenges, as human resources for ICU pro-
fessionals are restricted, and the restriction is becoming even 
more pronounced if medical staff is infected. To avoid transmis-
sion between patients and among health care workers, tests for 
SARS-CoV-2 based on Reverse Transcriptase Polymerase Chain 
Reaction (RT-PCR) are routinely performed in patients at ICU 
entry and repetitively every few days thereafter. Serial test-
ing is tedious per se and the effectiveness of such a protection 
scheme is limited by the varying sensitivity of the tests, which 
depends on the collection technique, the momentary viral load 
and the time passed since exposure to the virus [1]. Further-
more, in future pandemic waves or even a novel phase, daily 
testing for routine screening may be inefficient and low yield in 
the long term. This is particularly important for pulmonary as-
ymptomatic patients with incidental SARS-CoV-2 infection, e.g. 
patients hospitalized for primary stroke with concomitant SARS-
CoV-2 infections [2]. In these patients, who are not primarily 
assigned with pneumonia or being hospitalized for elective sur-
gery, rapid diagnosis of SARS-CoV-2 infection is highly relevant 
to effectively rule out virus transmission among patients and 
medical staff.

The purpose of this study is to develop a model for the pre-
diction of the actual presence of a SARS-CoV-2 infection before 
a valid test result is available and to avoid unnecessary testing 
in Critical Care Units.

Methods

The authors strictly adhere to the TRIPOD (transparent re-
porting of a multivariable prediction model for individual prog-
nosis or diagnosis) reporting guidelines [3]. 

Data source

In this study, we analyzed data from a cohort of patients 
treated in different ICUs at the Institute of Intensive Care Medi-
cine, University Hospital Zurich. Two separate datasets of labo-
ratory and Blood Gas Analysis (BGA) tests were collected ret-
rospectively for the development and subsequent validation 

Results: The overall best model, evaluated via cross-
validation on the development set, is an optimized ERT mod-
el with a ROC AUC value of 0.946. The model performance 
on the validation set is best for the simplified RF model 
achieving a ROC AUC value of 0.701. Gini feature and per-
mutation importance for the simplified RF model revealed 
hemoglobin, procalcitonin, C-reactive protein, glomerular 
filtration rate based on CKD-EPI equation, creatinine, and 
urea as the most important input features. Using the simpli-
fied RF model and a threshold of 0.012 for the probability, a 
sensitivity above 80% with a specificity of 43% is achieved. 
Compared to a hypothetical daily testing regimen, using a 
threshold of 0.145, the simplified RF model detects all posi-
tive cases, and, with a false positive rate of 35%, daily tests 
might be reduced by two thirds.  

Conclusions: The model developed may support the 
medical staff in the ICUs by enabling faster and more reli-
able recognition of COVID-19. Unnecessary serial test sam-
pling might be reduced. To ensure the quality of the model 
before clinical use, it should be further validated in prospec-

tive patient cohorts.

of candidate models. The data set used during model develop-
ment was composed of data collected from three different pa-
tient groups: 1. For the SARS-CoV-2 positive cases, we collected 
data from patients (n=254) treated in an ICU dedicated to pa-
tients with COVID-19 pneumonia from March 2020 to January 
2021. COVID-19 diagnosis was confirmed by a positive RT-PCR 
test for SARS-CoV-2 in a throat swab. The negative reference 
cases comprised of two patient groups: 2a. Patients treated on 
the Neurocritical Care Unit from September 2016 to October 
2021 (n=914), and 2b. Patients treated for severe influenza 
pneumonia at the Medical ICU between December 2017 and 
November 2020 (n=32). Influenza diagnosis was confirmed by a 
positive RT-PCR test for Influenza virus in a throat swab or in tra-
cheal secretion. For patients of the negative reference groups 
2a and 2b, it was ensured that they had no positive SARS-CoV-2 
test result. 

The models were validated on the validation dataset collect-
ed from the Neurocritical Care Unit and consisted of data from 
7 positive and 42 negative patients from March 2020 to January 
2022 and from November 2021 to January 2022, respectively. 
RT-PCR testing for SARS-CoV-2 was performed routinely at ad-
mission and on day 1, 3 and every 5 days thereafter. Notice that 
the Neurocritical Care Unit was the intended location of deploy-
ment of the algorithm.

Outcome

The primary outcome for the evaluation of the algorithm’s 
performance was the contraction of a SARS-CoV-2 infection. 
However, detection models were trained to discriminate be-
tween all three labels SARS-CoV-2, influenza, or neither. More-
over, the goal of the detection model was not to establish the 
outcome just at admission of the patients but to adapt to newly 
available laboratory values throughout their ICU stay. So, even 
though the herein used datasets were curated in a way that a 
single patient only belonged either to the category of SARS-
CoV-2 positive or negative patients, the detection algorithm 
that results from the training should also be able to detect pa-
tients infected during their hospital stay. 

Participants

The study was approved by the local ethics committee. Writ-
ten consent was given by legal representatives, as all patients 
were incapable of judgment. 

Predictors

Only commonly available laboratory and BGA findings were 
considered as predictors for detection of a SARS-CoV-2 infec-
tion. Thus, after compiling laboratory and BGA results for the 
development dataset, the number of model input variables was 
narrowed down by proceeding only with laboratory and BGA 
results that were simultaneously available for all three patient 
groups (SARS-CoV-2, influenza, neither) and in more than 75% 
of the cases. This pre-selection process resulted in the using the 
following set of 22 laboratory results as predictors: Hemoglo-
bin (HB), white blood cell count (LC), lymphocyte count (LYM), 
monocyte count (MON), neutrophil count (NEU), platelet count 
(TC), fibrinogen (FBG), International Normalized Ratio (KHINR), 
albumin (ALB), alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), total bilirubin (BIT), creatine kinase (CK), 
glomerular filtration rate based on CKD-EPI equation (CKDEPI), 
C-reactive protein (CRP), procalcitonin (PCT), creatinine (CREA), 
urea (UREA), sodium (Na+), kalium (K+), lactate (Lac), standard 
bicarbonate (SBC). As these predictors were measured repeat-
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edly for each patient, this data was represented by multidimen-
sional time series. From this data, feature vectors were sam-
pled, i.e., sets of input variables such that the feature vectors 
appropriately modelled the distribution of inputs if one mea-
sured them for a random patient at a random time. The latter 
being crucial as longitudinal models were developed. To meet 
the distributional requirements, we generated the feature vec-
tors by resampling the multidimensional predictor time series 
using a constant interval of 4 hours and always recording the 
last measurement for each input and interval. This process re-
sulted in a time-weighted distribution of feature vectors that 
were independent of the frequency of repeating the laboratory 
analyses. Only the feature vectors sampled from the first 48 
hours after ICU admission were included in the training set for 
positive cases. For the validation dataset, we proceeded in the 
same way but used a sampling interval of 10 min to achieve a 
higher time resolution to facilitate analysis of the output time 
series.

Missing values

Forward filling for missing values was used by propagating 
the last known value for each predictor forward in time. To 
handle missing predictors, iterative imputation was used to fill 
missing values based on available values by the means of linear 
regression models.

Model development

Data processing was performed using Python 3.8, and in par-
ticular scikit-learn (version 1.0), which is an open-source Python 
module for machine learning (ML) model development and vali-
dation. 

During the development phase, nested 5-fold Cross-Valida-
tion (CV) was used to train and test a set of different ML mod-
els, or, more precisely, ML pipelines. Subsequently, we used the 
trained models to make predictions on the validation dataset. 
Two types of tree ensemble models were evaluated, namely 
Extremely Randomized Trees (ERT) [4] and Random Forest (RF) 
[5] models. We restricted ourselves to tree ensembles to not 
rely on extensive pre-processing and normalization of the input 
values, which can be difficult for heavily skewed distributions 
of inputs, typical for laboratory findings, and which can also be 
a source of bias. To avoid feature leaking during CV, the data 
pre-processing as well as the actual ML model were specified as 
pipelines, which encapsulate all necessary steps to select and 
train a model and subsequently compute a model’s output from 
a set of raw feature vectors. Moreover, for model training, we 

adjusted the sample weights such that the weighted number of 
samples was identical for all outputs categories/classes to ef-
fectively balance the dataset. 

Model specification

For both above-mentioned model types, we trained a base-
line model without hyper parameter tuning comprising of fully 
grown trees, i.e., no restriction on the maximum depth of trees, 
an optimized model for which we performed a grid search to 
find optimal values for the maximum depth and the maximum 
number of considered features at each decision point in the 
tree, and a simplified model that only uses the 6 most important 
features. Exact model definitions can be found in the supple-
mentary information. 

Model performance metrics

Since the models were trained on all three labels (SARS-
CoV-2, influenza, and neither), they also provide three prob-
ability estimates as output, namely the individual probabilities 
that a patient belongs to that exact category. However, to gauge 
model performance only the probability of contracting SARS-
CoV-2 was considered relevant, i.e., turning the models into 
binary classifiers. Thus, the area under the receiver operating 
curve ROC AUC could be used as performance metric. Confi-
dence intervals (CI) were computed for the ROC AUC values 
based on the (CV) predictions of the models using bootstrap-
ping (random resampling with replacements of entire patients).
To help with the interpretation of the achieved performance, 
Gini and permutation importance were computed for the de-
velopment and validation datasets, respectively 5,6. Additionally, 
a set of reference models that excluded the influenza dataset 
was also evaluated. Finally, the longitudinal behavior was ac-
cessed qualitatively by inspection of the predicted probabilities 
in timeseries charts and quantitatively by comparing the detec-
tion rate with the percentage of unnecessarily performed tests 
for a specific scenario with daily tests based on a threshold and 
the model output.

Results

Data sampling

The described methods of data sampling generated large 
development and validation datasets. Table 1 summarizes the 
number of patients stratified according to the three defined dis-
ease categories and resulting feature vectors for each category 
and the two datasets used for development and validation of 
the models.

Table 1: Number of patients and feature vectors (samples) per output class for the development and validation sets.

Development set (sampling time 4 h) Validation set (sampling time 10 min)

Number of patients (n 1200) Number of samples Number of patients (n 49) Number of samples

SARS-CoV-2 positive 254 2’992 7 5’623

Influenza positive 32 3’296 -- --

Negative 914 44’687 42 40’077

Missing values

Restricting our analysis to commonly available laboratory 
and BGA findings, limited the number of missing values in the 
sampled feature vectors. Figure 1 shows a comparison of the 
availability of input values for the different output categories in 
the development set (availability of input values in the valida-
tion set is given in Figure A1 as supplemental material). Notice 

that the availabilities are time-weighted due to the used sam-
pling scheme. If the availability falls below 75%, this means that 
this variable was often measured only later in a patient’s stay 
on the ICU.
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Figure 1: Overview of the availability of input data in the devel-
opment set. Bar plots depicting the availability of the individual 
predictors in the feature vectors for the development set of the 
three output categories. The panels A, B, and C show the avail-
ability in the categories “negative”, “influenza positive”, and “SARS-
CoV-2 positive”, respectively. A red bar indicates an availability in 
less than 75% of the feature vectors.

Model development

12 tree ensemble models have been trained in total, half of 
them were reference models excluding the influenza data. To 
make comparison easier, all models were based on 200 decision 
trees, and sample weights were always adjusted to balance the 
dataset. For the baseline models we kept the default param-
eters for all model parameters except from the number of base 
estimators, i.e., decision trees that were used.

For the optimized models we performed a grid search to find 
the optimal maximum tree depth of the decision trees and the 
optimal number of random features considered for choosing 
the decision criterion at the nodes of the trees. Table 2 summa-

Table 2: Model selection results: The fitting of the optimized and simplified models involved hyper-parameter search as well as feature 
selection. The hyper-parameters of tuned models are summarized for the main and reference models including and excluding the influenza 
data, respectively.

Max. depth Max. features Selected predictors

Including influenza Yes No Yes No Yes No

ERT baseline model - - 4 4 all all

ERT optimized model 32 32 8 4 all all

ERT simplified model 128 8 2 2 CKDEPI, CRP, HB, UREA, CREA, MON CKDEPI, CRP, HB, UREA, CREA, MON

RF baseline model - - 4 4 all all

RF optimized model 256 256 4 4 all all

RF simplified model 16 4 2 2 CKDEPI, CRP, HB, UREA, CREA, PCT CKDEPI, CRP, HB, CREA, MON, PCT

rizes properties of the best estimators. After cross-validation, 
we fitted a final model to the entire development set, which 
was subsequently used for validation. 

Similarly, we trained the simplified models for which the 
feature importance was used to select the 6 most important 
features based on optimized models. Notably, during each step 
of the cross-validation, an optimized model was fitted to the 
training set, which internally used cross-validation to optimize 
itself. Selected features for different models are listed in Table 2. 
Again, final models were fitted after cross-validation.

Model performance

Performance was evaluated by cross-validation on the devel-
opment set and making predictions on the validation set. For 
the validation, we re-trained each model on the entire devel-
opment set. Thus, cross-validation results quantify the perfor-
mance of the whole model building processes, whereas the 
validation measures the performance of the single final model. 
Table 3 summarizes the evaluation results including confidence 
intervals. It should be noted, however, that due to the small 
sample size of the validation set, the corresponding confidence 
intervals are expected to exhibit a limited accuracy. Model per-
formance is generally high when tested on the development 
set, while optimization of the model parameters does not sig-
nificantly improve performance. The overall best model with 
a ROC AUC value of 0.946 ± 0.022 is the baseline ERT model 
without the inclusion of the influenza data. The performance 
on the validation set is worse. In general, it can be asserted that 
the ERT and RF models perform similarly, with the ERT models 
performing slightly better on the validation set except for the 
simplified models. Moreover, only the simplified models ben-
efit from the inclusion of the influenza data boosting their ROC 
AUC value on the validation set. Consequently, the simplified 
RF model (with influenza data) is the best performing model 
achieving a ROC AUC value of 0.701.

Table 3: Model performances: Performance metrics of different models measured as the area under the receiver operating characteristic 
curve (ROC AUC). 5-fold cross-validation (CV) was used to compute the mean and standard deviation of the metrics on the development set. 
Fitted models were subsequently used to detect SARS-CoV-2 infection in the validation set. Best-performing models are highlighted in bold. 
Confidence intervals (CI) are shown in brackets. For the development set, we also state the average ROC AUC values as computed from CV 

predictions. 

ROC AUC for development set ROC AUC for validation set

Including influenza Yes No Yes No

ERT baseline model
0.940±0.007

(0.940; 95% CI: [0.936,0.956])
0.946±0.022

(0.947; 95% CI: [0.942,0.961])
0.669 

(95% CI: [0.613,0.825])
0.656 

(95% CI: [0.603,0.817])

ERT optimized model
0.944±0.006

(0.944; 95% CI: [0.939,0.957])
0.944±0.023 

(0.945; 95% CI: [0.939,0.961])
0.636

(95% CI: [0.584,0.802])
0.684 

(95% CI: [0.630,0.847])
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ERT simplified model
0.900±0.018

(0.899; 95% CI: [0.893,0.918])
0.906±0.031 

(0.853; 95% CI: [0.844,0.880])
0.662

(95% CI: [0.611,0.821])
0.632 

(95% CI: [0.582,0.788]) 

RF baseline model
0.939±0.010

(0.939; 95% CI: [0.934,0.954])
0.944±0.019 

(0.944; 95% CI: [0.939,0.958])
0.648

(95% CI: [0.588,0.808])
0.643 

(95% CI: [0.592,0.809])

RF optimized model
0.939±0.011

(0.939; 95% CI: [0.933,0.952])
0.942±0.020 

(0.943; 95% CI: [0.938,0.956])
0.636

(95% CI: [0.577,0.812])
0.625 

(95% CI: [0.568,0.773])

RF simplified model
0.887±0.024

(0.871; 95% CI: [0.862,0.893])
0.904±0.034

(0.904; 95% CI: [0.897,0.923])
0.701

(95% CI: [0.658,0.832])
0.612 

(95% CI: [0.559,0.782]) 

The ROC curves for the best performing simplified RF mod-
el and the analogous ERT model are shown in Figure 2 for the 
development and validation datasets (ROC curves for all mod-
els are given in Figure A2 in the supplemental materials). The 
predicted probabilities for the samples in the development set 
were computed during cross-validation. We found that one 
could simultaneously achieve a sensitivity above 80% and spec-
ificity of 43% using the simplified RF and a threshold for the 
probability of 0.012 as an example. 

Figure 2: Comparison of ROC curves for the simplified RF and 
ERT models. Panel A shows the ROC curves of the simplified RF 
model computed based on the predicted probabilities for the de-
velopment dataset (using cross-validation) and the validation set in 
blue and in orange, respectively. Panel B shows the corresponding 
plot for the simplified ERT model. The false positive rate is indi-
cated in gray for the lowest true positive rate exceeding 0.8 on the 
validation set.

To further investigate the performance degradation of the 
models on the validation set, Figure 3 shows the Gini feature 
importance obtained on the development set in direct compari-
son with the permutation importance calculated using the vali-
dation set. The Gini feature importance reflects the importance 
of features learnt from the development set by computing the 
mean decrease of the impurity between subsequent tree nodes. 
The permutation importance, on the other hand, reflects the 
feature importance when making prediction on the validation 
set. The Gini feature importance is distributed relatively even 
between all features for both models with HB, CKDEPI, and 
CRP being among the most important ones. A clear difference 
between the models is the use of PCT in the RF model, an in-
put that has not been selected by the ERT model. Moreover, 
HB and CRP also remain important when making predictions 
on the validation set, whereas CKDEPI as well as UREA become 
less relevant, which could explain the performance degradation 
we have seen. Interestingly, PCT is also an important feature for 
making predictions on the validation set, which could explain 
why the RF model performs better than the ERT model, which 
does not consider it.

Figure 3: Gini feature importance and permutation impor-
tance for simplified models. Panels A and C depict the Gini fea-
ture importance for the simplified RF and ERT model, respectively. 
Panel B and D show the corresponding permutation importance 
for the RF and the ERT model, respectively.  The computation of 
permutation importance was repeated 5 times, the vertical lines at 
the ends indicate the standard deviation between the repetitions. 
(Gini feature importance and permutation importance for all mod-
els are given in Figures A3 to A6 in the supplemental material.)

Figure 4 visualizes the outputs of the best performing model 
for all positive cases to qualitatively assess the model perfor-
mance and stability. Stability means that the output of a model 
does not change radically between subsequent sets of labora-
tory results. Figure 4 shows that testing was conducted most of 
the time after the model indicated an infection. 

To estimate potential benefits of implementing the model 
in clinical practice, a hypothetical scenario is analyzed. In this 
scenario, instead of regular daily testing, it is assumed that a 
SARS-CoV-2 test is performed as soon as the model output ex-
ceeds a certain threshold but at most once a day. Based on this 
scenario, the fraction of positive cases that would get tested at 
least once during their stay in the ICU as well as the percent-
age of patients that would get tested unnecessarily every day 
have been determined simultaneously. Further, assuming a low 
prevalence, the latter can be approximated by the percentage 
of negative patients that would get tested each day. Figure 5 
shows the result of this analysis. Using a threshold of 0.145, all 
positive cases can still be detected, but daily tests would be re-
duced by two thirds. 
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Figure 4: Time series of predicted scores for positive patients 
in the validation set. The different panels depict the output of the 
simplified RF in blue. The red vertical line indicates the time at 
which the SARS-CoV-2 infection was confirmed by a PCR test. The 
grey area and the black line indicate the interquartile range and 
the median of the model outputs for negative cases in the valida-
tion set.

Figure 5: Comparison of detection of positive cases and un-
necessary testing: The plot shows the fraction of patients with at 
least one test (which we assume has a positive result) as a function 
of the percentage of patients tested each day. In gray, we indicate 
the lowest percentage of patients that need to be tested to find all 
positive cases (threshold=0.145). 

Discussion

With the present project, dynamic detection models based 
on daily collected laboratory values for SARS-CoV-2 infec-
tion have been developed. The overall best model, evaluated 
via cross-validation on the development set, is an optimized 

Extremely Randomized Trees model with a ROC AUC value of 
0.946 ± 0.022. Models have been validated on a left-out-dataset 
with patients treated on the Neurocritical Care Unit, where the 
model is intended to be implemented in the future. The perfor-
mance of all models is significantly worse on the validation data 
set compared to development set. The model performance on 
the validation set was best for the simplified Random Forest 
model achieving a ROC AUC value of 0.701. Using the simpli-
fied RF model and a threshold for the probability of 0.012, after 
all, a sensitivity above 80% with a specificity of 43% could be 
achieved, which qualifies the model as a screening tool in clini-
cal practice. Due to the high sensitivity, only a few patients with 
COVID-19 might be missed, and due to a 43% false positive rate, 
unnecessary testing could be significantly reduced. Universal 
screening tests of patients admitted to healthcare facilities is 
performed in many emergency departments [7] and has been 
advocated especially in woman admitted for delivery [8]. A rou-
tine screening may be even more justifiable in patients admit-
ted to a Neurocritical Care Unit, mostly suffering from impaired 
mental state or consciousness so that neither the vaccination 
status nor a history of COVID-19 like symptoms can be elicited. 
High costs or reduced testing capacities, however, may impair 
routine screening in the long term or render it inefficient with a 
low yield in a future endemic phase. Compared to a hypotheti-
cal daily testing regimen using a threshold of 0.145, the simpli-
fied RF model detects all positive cases, and, with a false posi-
tive rate of 35%, daily tests could be reduced by two thirds.  A 
predictive model to identify patients with a high probability of 
SARS-CoV-2 infection – in the sense of an alarm system-may al-
low more specific testing, reduce the burden of repetitive test-
ing for individual patients, medical personnel and laboratories, 
and save costs.

In a living systematic review by the COVID-PRECISE group, 
33 multivariable models to distinguish between patients with 
and without COVID-19 have been identified [9] (https://www.
covprecise.org/living-review/). However, all models resulted in 
a single time point prediction (snapshot situation) in contrast 
to our model assessing the specific patient risk daily on lon-
gitudinal data. The actual model developed is adapted to the 
newly available laboratory values throughout the ICU stay. This 
longitudinal application of the algorithm will make it especially 
useful in patients during the entire ICU stay. Furthermore, in 
contrast to other models, patients treated for severe influenza 
pneumonia were included to train the model to reduce the ten-
dency of potential models to detect viral pneumonia in general 
instead of COVID-19. By comparison with reference models dis-
regarding data of influenza patients during training [9], it could 
be shown that including this data significantly improves the per-
formance of the simplified models on the validation set. 

Gini feature and permutation importance for the simplified 
RF model revealed HB, PCT, CRP, CKEPI, CREA and UREA as the 
most important input features, which seems comprehensible. In 
a meta-analysis including data from 57,563 COVID-19 patients, 
hemoglobin levels were lower in patients admitted to intensive 
care units [10].  Quite specific for COVID-19, the SARS-CoV-2 vi-
rus attacks the heme group of hemoglobin delivering toxic iron 
leading to high ferritin values and anemia [11].  Inflammatory 
immune responses with elevated CRP and PCT are known to be 
strongly associated with severe COVID-19 [12,10].  As a result, 
patients with chronic kidney disease are disproportionally af-
fected by COVID-19, while the course of illness in patients with 
severe COVID-19 is frequently complicated by acute kidney fail-
ure [13] which explains the values reflecting renal insufficiency. 
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The study has several limitations concerning the data set, 
model development and its performance assessment.  The 
number of included patients for the different datasets was lim-
ited by the availability of the data, i.e., the training of the mod-
els could benefit from a larger and more representative sample 
of input variables. The small data set of SARS-CoV-2 positive 
patients, furthermore, makes the model susceptible to over 
fitting. As for other diagnostic models, a case-control sampling 
was used and the characteristics in the development popula-
tion extracted from the Medical ICU may be different from the 
target population at the Neurocritical Care Unit. Patients at the 
Medical ICU may not be representative of the model’s target 
population at the Neurocritical Care Unit, which implies a rel-
evant risk of bias. It is crucial that the training set is represen-
tative for the clinical context where the algorithm is intended 
to be implemented [14]. Thus, over time, model performance 
could greatly benefit from regular re-training the models on 
new data of positive and negative cases collected at the Neuro-
critical Care Unit as the target ICU for implementation. Neither 
epidemiologic data nor patient characteristics or clinical find-
ings indicative for COVID-19 were included for model training. 
The inclusion of features as age, vaccination status, comorbidi-
ties, flu-like symptoms, together with physiological features like 
fever, respiratory rate, blood pressure and heart rate etc. may 
most likely improve the predictive performance. As the preva-
lence of COVID-19 in the training dataset does not represent a 
real word scenario, we could only study true positive and false 
negative rates when assessing model performance or work with 
assumptions as we have when analyzing the practical scenario. 
Due to the large number of negative reference cases relative to 
the other two categories, the development set is unbalanced. 
However, to include this large amount of negative reference 
cases was intentional to establish a strong baseline from which 
the models needed to learn to distinguish from. Moreover, the 
dataset was balanced by adjusting the samples weight to avoid 
producing biased models. Finally, generalizability is not given as 
the model has not been validated in external datasets by inde-
pendent investigators. 

To conclude, the model developed might support the medi-
cal staff in the ICUs by faster recognition of COVID-19. Unneces-
sary serial test sampling which burdens patients, medical per-
sonnel, and laboratories may be reduced. The model might be 
helpful especially in regions with limited test capacities and in 
triaging patients when allocating hospital resources. To ensure 
the quality of the model before clinical use, it should be further 
validated in prospective patient cohorts. Changing courses of 
the SARS-CoV-2 pandemic require adaptations of the model by 
re-calibrations of the baseline risk at close time intervals.
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