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Abstract

The new coronavirus that is now popular with the title 
of COVID-19 around the world and boasting in spreading 
at a pandemic level, causing more panic than killings, is the 
seventh in the line of the class of coronaviruses. This fam-
ily of viruses headed by the common cold or flu virus has 
lived in symbiosis with humans for long. Viruses such as 
Coronaviruses that have lived for millions of years, much 
longer than any other beings on the earth keep evolving for 
survival. Coronaviruses on the path of their evolution for 
survival have evolved into different types of SARS (Severe 
Acute Respiratory Syndrome), MERS (Middle East Respira-
tory Syndrome) and now COVID-19 targeting specifically us 
human beings. In fact, the outbreak of Coronaviruses in dif-
ferent forms over the past several years is a good indicator 
that these viruses are pushing for survival and co-evolution 
within the human hosts.

The symbiotic and ecological option of living with Coro-
naviruses in peace with no panic and resistance that might 
be surprising is not new in the nature as living in peace or 
“symbiosis” among the living creatures from plants, ani-
mals, bacteria and viruses to us humans have been a rule 
and part of the law of survival than exception. The symbio-
sis between coronaviruses and their hosts that is obligatory 
and not optional on part of the viruses could be in fact ben-
eficial and evolutionary for us.

The universal entry of the coronaviruses in the recent 
years and now with the virulence pandemic of COVID-19 
is a strong evidence of the natural selection obligation that 
the virus has for maintenance of our longer-term survival.

Introduction

Viruses such as Coronaviruses have lived for millions of 
years, much longer than any other beings on the earth and keep 
evolving for survival. This is more true for RNA viruses such as 
Coronaviruses that depend on their hosts to survive, due to lack 
of DNA for independent living. So on the path of their evolution 
for survival; they evolve in different types invading the hosts like 

humans. SARS (Severe Acute Respiratory Syndrome) and MERS 
(Middle East Respiratory Syndrome) that hit humans’ popula-
tion a few years ago before COVID-19 are the other types of 
Coronaviruses. In fact, the outbreak of Coronaviruses in differ-
ent forms over the past several years is a good indicator that 
these viruses are pushing for survival and co-evolution now 
within the human hosts [1-7].
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In this article, I discuss the wise option of living with Corona-
viruses in peace with no panic and resistance. This contention 
that might surprise many is not new in the nature as living in 
peace or “symbiosis” among the living creatures from plants, 
animals, bacteria and viruses to us humans have been a rule 
and part of the law of survival than exception. The symbiosis 
between two livings could be obligatory or facultative (optional) 
that could be different on each side of the equation or relation-
ship. For example in the case of microbes and viruses, the sym-
biosis on their parts is obligatory as they cannot survive without 
the hosts, but is optional on the hosts part to let them in or fight 
back and being destroyed.

Symbiosis and endosymbiosis

Symbiosis, a Greek word meaning, “living together”, is any 
type of close and long-term biological relationship, interaction 
and dependency between two biological organisms in a mutu-
alistic, commensalistic or parasitic manner. Endosymbiosis or 
living inside of the tissues of the hosts that most microbes, such 
as bacteria and viruses do, including many bacteria already liv-
ing in peace within us, e.g. in our digestive system, assists with 
our normal living. A peaceful and healthy endosymbiosis in fact 
leads over time to reduction of the genome size and power of 
the invader or endosymbiont and lower its fatality due to the 
adaptation with the host.

This has been a vital part of “co-evolution” in nature on 
earth since its living inception. In fact, eukaryotes, the origin 
of plants, fungi and animals like us all have evolved through 
this symbiogenesis. Mitochondria, chloroplasts and other cel-
lular organelles that divide and replicate independent of the 
cells in living creatures like us are the obvious examples of such 
evolutionary endosymbiosis. In fact, the notion of Darwinism 
based on competitive survival has been replaced in the modern 
scientific arena to the cooperative and symbiotic evolutionary 
survival [8-10]. One of the most impressive example of endo-
symbiosis indeed is the microbiota living in the mammalian guts 
including 100 trillion microbes living in one human’s gut. The 
gut microbiota is so vital for the maintenance of our immune 
system in fight against infections and diseases for our survival 
that when disrupted and not cooperated with, e.g. in the case 
of slow bowel movements and constipation, they could turn to 
pathogens and causing diseases such as colon cancers. In endo-
symbiosis, e.g. our guts microbiota, the relationship is not static 
but dynamic and plastic or flexible on both sides. Any disruption 
of this equilibrium takes long and many processes of negotia-
tions, commensalism and mutualism on both parts for the sake 
of peace and survival, unless the terms of homeostasis is bro-
ken repeatedly or continually by one side that is mostly by the 
hosts. This indeed is a major lesson observed diligently in mo-
lecular biology that needs to be expanded to other symbioses 
and endosymbiosis around and within us. In fact, the survival of 
our ecosystem outward and inward is heavily dependent on a 
full cooperation between the partners of symbiosis and endo-
symbiosis that hinges mostly on the hosts part like us [11-16]. 
Another impressive well know example of endosymbiosis be-
tween us and the microbes is the bacterial communities present 
in the vagina of reproductive-aged women as a cornerstone of a 
multifaceted antimicrobial defense system. The vaginal microbi-
ota play a significant role in the prevention of bacterial vagino-
sis, yeast and sexually transmitted infections, urinary tract and 
HIV infections among others. The lactic acid-producing bacteria 
(mainly Lactobacillus sp.), common colonizing bacteria in the 
human vagina, are the key players in maintaining homeostasis 

of this microbiota endosymbiosis. Like the gut, depending on 
the sexual activity, menstrual cycle, and other environmental 
factors, there are periods of community-wide stability as well as 
periods of extreme variability. The stability or healthy symbio-
sis and instability or dysbiosis in vagina depends heavily on the 
host and her sexual/hygienic/reproductive behaviours [17-20].

Viruses are not antagonistisc but essentials

While the roles of bacteria have been known for long in en-
dosymbiosis of the hosts well-being like us, the role of viruses 
traditionally and still out of scientific arena in endosymbiosis 
has not been appreciated until about a decade ago. Indeed vi-
ruses due to their much minute sizes and its cellular structures, 
particularly RNA or particle viruses that cannot survive inde-
pendently have much more endosymbiotic roles not only in the 
large size beings like us, but even within bacteria. This mutual-
istic relationship has been explored in detail recently pointing 
to the vitality of viral endosymbiosis not for short-term survival 
but for long-terms and in the hosts’ evolution, as they are the 
major partners in the hosts’ genomes. In fact, the viral symbio-
genesis seems to be the most important factor in the evolution 
of all forms of life on earth [21-24].

Viruses that have been until recently associated with diseases 
and studied as such, are the most abundant and diverse biologi-
cal entities on the planet. Recent biodiversity surveys in desert, 
ocean, soil, animals and plants have revealed the vital roles of 
viruses in every ecosystem. Due to their obligatory existence as 
endosymbiont within all other beings larger than themselves, 
the viruses have to possess evolutionary plasticity to form and 
maintain the most excellent models of symbiotic relationships. 
Moreover and most importantly, the viruses are the main force 
behind the genome diversities and genetic evolutions across all 
species. Indeed the majority of virus-host interactions all around 
are commensal or friendly. But even in the case of antagonistic 
interactions, when there is resistance from the host by fight-
ing the virus through its immune armamentarium, the plasticity 
and obligation of the virus for endosymbiosis living and evolu-
tionary genetic diversification, assists the survival of the host at 
the end of the arm race, as the end of life of the host would be 
the end of life of the virus [25-34]. A great example of such co-
evolution and assistance in survival is the “interferon”, a master 
regulator of the immune system and cell metabolism found in 
nearly all cell types that has evolved within lives through viral 
interactions. Another impressive example observed in the inter-
action between a bacterium and lytic virus and also in the killer 
viruses of yeast by the virus protection against the lytic phage 
(virus fighting against its own killing machine) for the survival 
of the host, ultimately leading to the endosymbiosis or depen-
dency of the host onto the virus for living.

Studies on plants that were first to appreciate the impor-
tance of viral interactions and symbiosis in ecosystem, diversity 
and evolution of the plants, have also shown how viruses assist 
the plants in coping with their adverse environments such as 
drought, thermal tolerance and adversarial invasions [34-43].

In human studies, GB virus C has been shown to fight against 
HIV through down-regulation of cell receptors for entry, reduced 
replication, promoting interferon and interactions with interleu-
kin immune pathways. Latent herpes virus and cytomegalovirus 
have also been shown to enhance the T cells immune response 
to influenza and other fatal microbial invasions. Endogenous 
retroviruses that make up at least 8% of human genomes and 
non-retroviral endogenous viruses have been revealed in recent 
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years that have been contributing for millions of years to the 
genetic evolution and diversities of all living forms on earth. 
This so-called endogenization of viral elements has sculpted the 
evolution of extant genomes in all domains of life. The signifi-
cance of the contribution of viral interactions in the evolution 
of their hosts’ genetic make-up, diversity and survival became 
possible only since the sequencing and analysis of hosts genom-
es such as humans in the recent years. In brief, viruses that have 
until recently been considered fatal and antagonistic to life, at 
least in the field of virology, genetics, evolution, ecosystem and 
biodiversity, have been appreciated as the most important vital 
elements of life on the planet [44-63].

What about the aggressive viruses?

As early as mid-80s, it has been argued that the virulence 
of a microbial invasion such as viral infections could be favored 
by the natural selection and lead more to co-evolution, when 
pathology enhances genetic transmission, better adaptation 
and evolution [64]. This has also been shown in the case of 
coronavirus as early as mid-90s, when it was shown that mouse 
hepatitis virus strain A59 (MHV-A59) a member of the family 
of coronaviruses, containing a single-stranded positive-polari-
ty RNA genome, similar to other coronaviruses, e.g. SARS and 
COVID-19, that the co-evolution between the mouse and the vi-
rus favors virulence. In a vitro (lab study), Wan Chen and Ralph 
Baric in 1996 showed the resistant host cells of the mouse that 
impede the vertical transmission of the virus created a genetic 
bottleneck for the subsequent selection of a more virulent vari-
ants viruses [65].

The virulent coronaviruses such as SARS, MERS and now 
COVID-19 that once long ago were circumlocated to the wild 
life mostly bats and one genu have rapidly spread intra-species 
(e.g. between different genu of bats) and recently inter-species 
even to humans.

This rapid spread of this class of virus with its high virulence 
is a hallmark of the coronavirus rapid evolution [66]. Most re-
cently, Letko and colleagues in 2018 have shown that how 
MERS-CoV by altering the surface charge of its spike (or crown 
where the name of Corona derives from) surpasses the host cell 
receptor resistance for entry [67]. Koonpaew et al., [68] in 2019 
have also shown another coronavirus, Enter opathogenic Por-
cine Epidemic Diarrhea Virus (PEDV) and Porcine Delta Corona-
virus (PDCoV) that cause diarrhea in neonatal pigs in the past 
decade circumvent or subvert the host’s first line of defense for 
entry.

The evolutionary pathway of Coronavirus

Most impressive Wertheim and colleagues in 2013 argued 
and showed that coronaviruses infecting mammals (alpha-
and-beta coronaviruses) and gamma-and-delta coronaviruses 
infecting birds have co-existed and evolved with these ancient 
species between 190 to 489 million years ago [69]. By analy-
sis of the nucleotide sequences of these coronaviruses at the 
non-recombinant regions of their genomes and estimation of 
the branch length of the inferred maximum likelihood of their 
phylogenies, these researchers were able to extrapolate the lin-
eage of Coronaviruses being as ancient as their hosts, back to 
an average of 300 million years ago. More recently it has also 
been shown that the human coronavirus OC43 involved in the 
common cold or flu, that’s a beta coronavirus type 1, similar 
to the one infecting cattle (BCoV) has been spilled over from 
bovine to our homo sapiens ancestor after the first contact with 

their respiratory tracts [70].

The coronavirus spillover once again has emerged in the 
recent years with full force of the new types of beta corona-
virus infections such as SARS, MERS and now COVID-19. Such 
pathogen emergence is driven by ecological, genetic factors 
and codon usage at the service of adaptation of the virus to the 
hosts, through natural selection based on translation efficiency 
and drift according to the genomic mutation pressure. On the 
path of its evolution and adaptation to its host and breaking 
any resistance, the human coronavirus OC43 has evolved and 
changed to many genotypes and variants that had already been 
shown in the human samples in France and China among other 
places. What we have seen and suffered by the novel coronavi-
ruses of SARS, MERS and now COVID-19 in the recent years are 
all the tips of an iceberg of biodiversity and power of co-evolu-
tion of the coronaviruses deep down in the ocean of a universal 
ecosystem on earth [71-81].

An Enemy that was never

The human coronaviruses that evolved almost a million year 
ago with our Homo sapiens ancestor and lived with us since as a 
peaceful common cold or flu in our respiratory system has been 
striking back in the recent years. Our current knowledge despite 
the vast and fast progress in the field of virology and bridging 
with genetics, evolution and ecosystem, is still in its infancy, lest 
to resist the entry of our own coronavirus with its diversity and 
unbreakable armamentarium. Despite our current and ongoing 
all global panic over COVID-19, the virus has been fatal only in 
the elderly and individulas with underlying severe medical con-
ditions with poor immune system to adapt to the virus. Accord-
ing to the recent WHO data on COVID-19 mortality, almost 20% 
of the fatalities have been in the age group of over 80 years old 
with decreasing drastically by decade down the ladder of life, 
so 10% in the age group of 70-79, less than 5% in the age group 
of 60-69 and just over 1% in the age group of 50-59 with rare 
to almost no mortality in any age group under 50 years old (less 
than 1% in all age groups of 0-49). The above factual data is an 
evidence that the virus is not antagonistic and against our sur-
vival, but an endosymbiont and a part of the co-evolution and 
ecosystem that needs to be with us. While the interaction or in-
vasion of the coronavirus on the surface seems to be unilateral 
and opportunist with no benefit for us, our scarce knowledge 
in the very field cautions us to the contrary. Unlike the antago-
nistic and destructive viruses such as HIV and HPV, the corona 
viruses like many so other good viruses have never caused the 
extinction of their bovine and avian hosts and not even our own 
humans’ CoV-OC43 over million years of cohabitation has not 
harmed us seriously. Therefore, it is obvious that our human 
coronavirus in its different variants, even the current ongoing 
COVID-19 is a mutual partner that most probably is on the mis-
sion of evolving us or helping us to adapt to the current and 
the future environment. The virulence of the new variants of 
the human coronavirus as detailed in other viral cases is not a 
sign against mutual cohabitation or symbiosis and co-evolution 
but it speaks of the urgency for the need of entry at the service 
of genomic diversity and evolution. The fatalities of elderly and 
immune compromised population are due to their lack of de-
fense, notwithstanding this entry and adaptation for a healthier 
future, and they might not be fit candidate hosts for the virus. 
Any resistance to the virus entry, specially at the current time of 
its utmost urgent virulence for entry could lead to another later 
more aggressive entry through another more fatal pandemic 
outbreak.
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Conclusion

The current universal panic about the COVID-19 has been so 
far the worst pandemic event befalling on the humans globally. 
Although there have been epidemics and pandemics across the 
human history such as plague and Spanish Flu, none has been 
this extensive crossing all the waters and lands. While at the 
onset, the virus outbreak appeared as an epidemic and limited 
to China and its Wuhan province where the outbreak started, 
there has been rarely any place on the face of earth to have 
skipped this microbial invasion. This universal entry of the coro-
navirus, after the recent SARS and MERS with its powerful viru-
lence is a strong evidence of the natural selection obligation 
that the virus has for maintenance of our longer-term survival.

The lack of knowledge in the public about the significance of 
symbiosis with other beings such as viruses that have been the 
backbones of life like other vital elements making this planet, 
has been the cause of our world- wide panic never seen before. 
While even in the scientific arena viruses until recently were 
thought as antagonistic and pathogens, we need to come to 
the realization and appreciation of the role of viruses in every 
single life form from plants to bacteria and larger animals like 
us. Symbiosis and endosymbiosis is a vital part of life and has 
existed from the inception of life on the planet with no excep-
tions, even for us. In summary the human coronavirus OC43 
that has spilled over almost a million year ago from bovines to 
our homo, sapience ancestor has been living with us in peaceful 
endosymbiosis causing only a mild flu or common cold since. 
The recent aggressive invasion of the virulent variants of the 
virus, e.g. SARS, MERS and now COVID-19 does not mean that 
the virus agenda has changed from a peaceful cohabitation and 
co-evolution to wipe us out! In fact the current understanding 
and appreciation in the field is that the virulence and aggres-
sion of the virus for entry is not antagonistic to life, but at the 
service of an urgent entry for maintaining survival, natural se-
lection and evolution on both sides of the equation, the virus 
and the host. Any resistance and fighting back would lead to 
the future more aggressive and fatal entry of the virus as his-
tory has repeated itself with the outbreak of the current and 
ongoing COVID-19 that has been much more virulent than his 
sisters SARS & MERS.
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