Assessment on Knowledge, Attitudes and Practices of The Community on Milk Quality and Associated Factors for Milk Contamination in Haramaya, Kombolcha and Kersa Districts of Eastern Harerghe Zone, Oromia, Ethiopia

Bekiyad Shasho*
Haramaya University, College of Veterinary Medicine, Ethiopia.

*Corresponding Author(s): Bekiyad Shasho
Haramaya University, College of Veterinary Medicine, Ethiopia.
Email: beckie430mn@yahoo.com & ssbecky2014@gmail.com

Received: Oct 16, 2023
Accepted: Nov 22, 2023
Published Online: Nov 29, 2023
Journal: Annals of Epidemiology and Public Health
Publisher: MedDocs Publishers LLC
Online edition: http://meddocsonline.org/
Copyright: © Shasho B (2023). This Article is distributed under the terms of Creative Commons Attribution 4.0 International License

Introduction

Nowadays, zoonotic pathogens are major contributors to human food borne diseases in both developed and developing countries, and still a major challenge to human informed as being associated with the persistence of health worldwide [1]. It was reported by [2] that contribution and liability of veterinary medicine promotes a well-being of human health. Ethiopia constitutes both urban and peri-urban dairying as an important subsector of the agricultural production system. For smallholder farmers, dairying will get the opportunity for efficient use of land, labor and feed resources and generates regular income. Milk and milk products are economically important farm commodities and dairy farming is an investment option for smallholder farmers [3].

Having inevitability to human nutrition during different stages of life, milk and its products can also act as a vehicle for spread of various milk-borne diseases [4]. Milk is an example of ideal medium acting as ready-made vehicle for harboring, favoring and enhancing foodborne pathogens, like S.aureus [5]. El-Leboudy et al., (2016). Streptococcus sp. [6]. E. coli [5], Bacillus [6], in milk causing serious health risk on consumption, broadly termed as “milk-borne diseases” [7]. Raw milk can carry dangerous germs, such as Brucella, Campylobacter, Cryptosporidium, E. coli, Listeria, and Salmonella, which can pose serious health risks to humans [8].

Occurrence of zoonotic diseases such as bovine tuberculosis is also high in the cattle population mainly resulted from the consumption of raw milk in Ethiopian dairy farming system [9]. A zoonosis is any infectious disease that can be transmitted from animals, both wild and domestic, to humans [10]. Zoonoses are also considered to be twice as likely to be associated with emerging diseases as non-zoonoses [11]. Unhygienic handling of milk from production to market is not ideal and this is due to poor knowledge on hygienic practices, which lets them use non-potable water for cleaning of milk containers. However, they still consume raw milk and this is a major public health risk [12].

[13] found that peoples with low education have limited consciousness about public health significant diseases which are transmitted from the animals. As we are aware of the importance of milk and dairy products in a balanced diet, it is also true that if consumed unpasteurized, they can also present a health threat due to likely contamination with any pathogenic organism [14] These organisms can also originate from clinically healthy milk animals or from environmental contamination occurring during collection and storage of milk [15]. With the objectives of providing betterment and characteristic improvement of animal and human health [16], biosecurity, chemoprophylaxis, an immune-prophylaxis are the important tools for the prevention and control strategies of diseases of animals. Milk safety standards are critical components to develop in any country’s milk commodity that every consumer need to learn how to distinguish which is safe and unsafe, and a single method to attain this is to implement a “quality standard” to help consumers choose safe products [17].

Statement of the problem

In this day and age, microorganisms are chief contributors to foodborne illnesses both in developed and developing countries. Almost all the world community consumes milk so often for its nutritious purpose. However, all those incorporating milk into their daily meal are most likely vulnerable to be infected. Because, milk is an ideal medium acting as convenient vehicle for harboring, favoring and enhancing foodborne pathogens. Poor knowledge on hygienic practices let the community use non-potable water for cleaning milk containers.

Individuals with low education have inadequate understanding about public health significant diseases transmitted from the animals. That is why ingestion of raw milk and unhygienic handling of milk from production to consumption is still accustomed as usual. Even if the lactating cow appeared clinically healthy, it can pose a potential threat to societal health. In Ethiopia, particularly in those selected districts of eastern harergehe zone, a level of community perception has not been yet estimated.

The study objective

General objective

The goal of this coming study is to get acquainted with milk quality assessment along with the knowledge, attitudes, and practices of the community from dairy industries of Haramaya, Kombolcha, and Kersa districts of eastern harergehe zone, Oromia, Ethiopia.

Specific objectives

- To assess the level of KAPs of the community about milk quality in the study area
- To identify associated factors for milk contamination and
- To provide awareness on wrong use of milk and its products in order to build a healthy living status in the community.

Conceptual framework

Conceptual framework is a representation of the relationship you expect to see between your variables, or the characteristics or properties that you want to study. It is written by listing the considered variables and their interrelations before you design a framework, just refer to the study problem stated to help ensure that our framework is relevant theme of the conceptual framework (Diagram 1).

KAPs of the Community

- Habit of drinking raw milk
- Reluctant to use warm water
- Becoming inconsiderate
- Loss of trust
- Rigidity
- Fail to keep drug withdrawal periods
- Treat dipping

Associated Factors for Milk Contamination

- Absence of standard milking protocol
- Type of management system used
- Overcrowdedness in cows
- Lack of handwashing before milking
- Unclean milk containers
- Farm management practices
- Sanitary condition of processing environment
- Post-processing sanitation
- Nutrient content and high water activity
- Climatic aspects
- Lack of electric hotplates
- Drug residues
- Addition of water to milk after collection

Measures to be taken

- Biosecurity
- Community education
- Awareness provision
- Setting safety rules and quality standards
- Veterinary services

Diagram 1: A flow-diagram showing a conceptual framework on assessment of KAPs of the community about milk quality and associated factors for milk contamination.

Literature review

Associated factors for milk contamination and a community perception
Food obtained from animals, particularly, a milk, provides an ideal condition for germs to grow and can cause high health problems [18]. Absence of standard milking protocol by small-holder dairy farmers is the main factor for milk contamination [19]. Semi-intensive management was a risk factor when compared to extensive system, since overcrowded herds are prone to increased possibilities of environmental and animal contamination [20]. The consumption of raw milk and its byproducts is adapted in Ethiopia, which is risky for consumer health as it may initiate the spread of various diseases [21]. Factors significantly associated with milk contamination were lack of hand washing before milking and unclean milk containers [22].

The habit of drinking raw milk is the main predisposing factor for acquiring milk-borne infections [23]. Even though consumption of contaminated raw milk with *C. burnetii* does not seem to represent an efficient route of disease transmission, however, Bulk Tank Milk (BTM) has been reported an important specimen for epidemiological survey on dairy herds [24]. Brucella contamination of raw whole milk could occur through ways like management style, herd size, abortion rate, hygiene and disease control practices [25]. Numerous factors responsible for occurrence of pathogens in milk and its products are farm size, number of animals on the farm, milking hygiene, farm management practices, sanitary condition of processing environment, post-processing [26,27], transportation, geographical location, and season [28]. High nutrient content and water activity of milk favors the growth of pathogenic organism like salmonella and *E. coli* [29].

Raw milk and its products can be abandoned by Bacillus cereus when exposed directly to the soil, and it produces toxins triggering food borne illness and considered as a significant threat for public health [30]. Brucellosis [31], tuberculosis and streptococcosis are the major camel diseases transmitted through the consumption of the contaminated milk. Climatic aspects are also associated with pre-harvest contamination of *Listeria* species dairy farm [32]. At large, every bacterial organism gaining access into milk can multiply and give rise to spoilage, making raw or processed milk unsuitable for consumption owing to rancidity, moldy odor, or toxin production [33].

Knowledge and attitudes of the community towards milk contamination

Most often, lack of electric hotplates, and even absence of wood for boiling a water in the surrounding of milk collection centers [34] could make the dairy workers more reluctant to use warm water for washing milk containers and a towel with which they dry the teats [35]. Treating all the milking cows simultaneously can be difficult for money-driven owners running a dairy based business [36]. The occurrence of milk contamination is also directly proportional to how often the dairy managers contact veterinary professionals to keep their cows free from animal diseases of much significance on milk production and quality [37]. When the with withdrawal period is too long to wait, dairy producers may feel the loss of much amount of milk in spite of the healthier their cows will become after all [38]. Even if an animal health practitioner instructed them to discard the milk from a cow with recent antibiotic treatment history, they may be inconsiderate; and these are all matters that attitude have against milk quality [39].

According to [40], as most of small scale farmers live below the poverty line in that they have no or a little educational qualification, so they lack proper knowledge of raising livestock in a healthy manner and exposed to some potential risk factors associated with zoonosis. The proportion of the farmer who knew that there is involvement of risk factors from which the animals might contract the infection like overcrowding of livestock, irregular grazing places, poor hygienic condition of livestock, faulty farming practices, improper isolation of diseased animal was ridiculous [41]. The knowledge regarding animal husbandry (defined as “production and care of domestic animals”), milk safety, hygiene and environmental responsibility to healthy actions are compromised owing to cultural, geographic and economic constraints of these workers [42].

Even when tuberculin positive cow was brought forth a calf, they milked her and drink raw as they usually accustomed [43]. Pastoralists and small-scale dairy farmers in Cameroon had little knowledge about the transmission of bovine tuberculosis through milk due to inappropriate husbandry measures and dairy practices [44]. Amazingly, some farmers have told that they did not believe animals can cause disease to humans and they did not fear any disease that affected animals, and that they even eat meat of dead animals [45]. As a result, they are more exposed; however, they said that they have been living with these animals for many years and slaughter them when they are about to die [46].

Many African communities think as if diseases shared between livestock and humans with misbehavior or witchcraft [47], and all these practices are due to little information or lack of knowledge about milk quality at farm and on different features of dairy husbandry issues. The low level of attitude obtained regarding the possibility of contracting zoonotic diseases from apparently healthy cattle/animals [48]; drinking raw milk and the likelihood of milk contamination from clinically asymptomatic individuals are also issues requiring urgent intervention [49].

Community practices associated with milk contamination

Methods of milking, absence of detergents and a water used, to wash the udder, their hands, and milk utensils has peculiar effect to contaminate milk [50]. Sameness of water and towel to clean all cows’ udders before milking badly affects milk quality. Filtering is mandatory to remove adirt out from your milk. Teat dipping is also essential practice to be considered [51]. Boiling a milk for consumption is a must to be practiced as a duty [52]. Complying with the mandatory withdrawal period is strictly recommended, unless the milk gets contaminated drug residues [53]. The presence of organized body for a service focused on vaccinating cows against zoonotic diseases is what is needed at first hand [54].

Unhygienic ways of handling milk and milk products, consumptions behaviors such as consuming raw milk purchased from markets, and children directly consuming milk from the udder of animals (e.g., goats) [55]. Cleaning the udder before milking is important practice to reduce contamination of the milk [56]. Washing hands before collection, washing utensil before collection, addition of water to milk after collection, and covering milk utensil with lid after collection are some of the wrong practical ways by which zoonotic diseases can spread from infected animals to humans [57]. In developing countries like Ethiopia, a low living standard in both animals and humans plays a considerable role on milk-borne zoonosis [58].

Measures to improve the knowledge, attitudes, and practices of the community

Annals of Epidemiology and Public Health

Initiation of global anticipating scheme against a burden of foodborne infection has to be established in order to sustain the associated risk at ease [59]. Biosecurity is a management system employed to minimize the risk of incidence of infectious diseases to a herd, and is a basis for disease control, properly designed, demographically pertinent education programs vital to ensure optimal farmer’s involvement in its implementation [60]. A perception against the influence of milk-borne zoonosis is very limited in Ethiopia. Nonetheless, taking the large amount of unregulated milk consumed and the risk associated with it is likely to cause detrimental effect [61]. In the past times, the Ethiopian dairy sector has been progressing at a very fast rate while little courtesy has been implicated to the importance of safety of milk and milk products. With the aim of framing an appropriate intervention on public health significance of milk-borne zoonotic agents, there is a prerequisite to be properly documented as a baseline against zoonosis [49].

Accompanied by training the society on how to improve their perception and practices by avoiding drinking of raw milk by thinking repeatedly and reading labels when shopping “organic”, because many organic food stores sell unpasteurized dairy products, being aware of soft cheeses, and keeping dairy products refrigerated within the expiry date marked on the package [62]. Cow’s milk can get contaminated in several ways; just as all people do, all animals also carry microorganisms [63].

Sometimes, dairy cows spend much of their time grazing in pastures, where they come in contact with a variety of environmental germs [64]. In other cases, cows are confined to buildings, wherein more crowded conditions the bacteria can grow and spread from cow to cow. In addition, many microorganisms that are commensal organisms may be considered human pathogens as well [65]. Dairy processing facilities have many routes for the entry of the contaminating microbes. First, as a nutrient-rich liquid, a milk provides an ideal environment for microbial growth. Second, dairy processing plants are full of areas where “foot traffic” from personnel can be accompanied by microbes [66].

Thus, the phenomenon in which bacterial toxins may persist despite reheating even if the bacteria themselves are killed ought to be kept in mind. Being careful when travelling nations, following the recommended sanitary precautions for a given country and avoidance of eating raw dairy products [67]. Milk and unpasteurized dairy products are not the only sources of food poisoning [68]; it is likely much more common than most people think, considering most cases of “stomach flu” in adults which are real food poisoning [69].

Inclusion and exclusion criteria

Those individuals to be taken into consideration for assignment in this coming study are milking animal owners, dairy managers, health workers, veterinarians, and working personnel of dairy production centers in the study area. Individuals with no prior experience, those with incapability of participating in any farm decisions and in milk production centers, those not voluntary to make interview with us would be intentionally excluded.

Linkage with other institutions

The research will be conducted in collaboration with Haramaya University research affairs, and dairy cooperatives from each selected districts (Haramaya, Kombolcha and Kersa) of east harerge zone, for estimation of the level of KAPs of the community about milk quality and associated factors for milk contamination, facilitating resources needed to conduct a study.

Ethical approval

Rendering to the National Research Ethics Review Guideline of Ethiopia (NRRGGE), since it is going to be conducted in questioning form with the respondents out of society about their perception, the study requires a formal ethical approval. Hence, we will make a formal agreement before carrying out a survey with dairy industry managers, and a verbal consent with each study participants for the right of confidentiality of information they are going to provide concerning the enquiry to be investigated at each of the study areas.

Expected outcome

A level of KAPs of the community about milk quality will be assessed through questionnaire in order that every accountable body shall take any necessary decision on. Quality standards will be set so as to operate a hygienic way of keeping milk in the midst of the producers and consumers with a liable boundary line of poor and good quality. Potential associated factors for milk contamination will be identified. Awareness will be given against a wrong use of unsafe milk. The information assessed and evaluated would be used for prioritization of forthcoming public health schemes so as to build a healthy community in a healthy environment.

Benefits and beneficiaries

The result obtained from this study will benefit veterinarians, health-workers, and the community in terms of giving information about the KAPs of the individuals in the study area. It also helps the governmental bodies appealing a nice approach to provide awareness against consumption of raw milk and its products. The last but not the least benefit is that researchers from around the world will get a gap for further studies from this proposed research.

Work plan

Acknowledgements

Amidst numerous encounters that would tempt me to give up and give in, I am standing still with an incredible amount of positive energy—thanks to that!

In essence, I owe my instructor Dr. Dawit Kassaye, a debt of gratitude for his dedication to the Research Methodology and Analytical Epidemiology courses through which I have been equipped with a great aptitude of doing any research activities independently along with its respective analytical approach.
Table 1: Work Plan for the Research to be conducted from March, 2023 to October, 2023.

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Activities</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Writing Proposal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Proposal Presentation</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Material purchasing</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Questionnaire survey, data collection, & laboratory works</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Data Processing and Analysis</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Evaluation of Results & Discussion</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Writing the Thesis</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Research Presentation</td>
<td></td>
</tr>
</tbody>
</table>

Budget Breakdown

Table 2: Laboratory Materials and Chemicals’ Costs.

<table>
<thead>
<tr>
<th>Items and/or Materials (Instruments)</th>
<th>Unit</th>
<th>Quantity</th>
<th>Unit price</th>
<th>Total Price</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, papers for questioning</td>
<td>Packet</td>
<td>3</td>
<td>700</td>
<td>2,100</td>
<td></td>
</tr>
<tr>
<td>Test tubes</td>
<td>Piece</td>
<td>400</td>
<td>10</td>
<td>Contribution</td>
<td></td>
</tr>
<tr>
<td>Glove</td>
<td>Pair</td>
<td>1,000</td>
<td>15</td>
<td>Contribution</td>
<td></td>
</tr>
<tr>
<td>Ice box</td>
<td>Piece</td>
<td>1</td>
<td>450</td>
<td></td>
<td>Borrowing</td>
</tr>
<tr>
<td>BMRT Kits</td>
<td>kit</td>
<td>Full</td>
<td>---</td>
<td></td>
<td>Contribution</td>
</tr>
<tr>
<td>Coliform test kits</td>
<td>“</td>
<td>Full</td>
<td>---</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>MBRT kits</td>
<td>“</td>
<td>Full</td>
<td>---</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>12,100</td>
<td></td>
</tr>
<tr>
<td>Total (ETB)</td>
<td></td>
<td></td>
<td></td>
<td>12,100</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Per-diem and Transports Costs.

<table>
<thead>
<tr>
<th>Per-diem & Transport</th>
<th>Quantity</th>
<th>Payment/ ETB/day</th>
<th>No. of days</th>
<th>Total</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aiding personnel</td>
<td>2</td>
<td>200</td>
<td>25</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>Transportation fee</td>
<td>-</td>
<td>200</td>
<td>20</td>
<td>11,000</td>
<td></td>
</tr>
<tr>
<td>Lab. technician</td>
<td>1</td>
<td>100</td>
<td>30</td>
<td>9,000</td>
<td></td>
</tr>
<tr>
<td>Total (ETB)</td>
<td></td>
<td></td>
<td></td>
<td>30,000</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Summary of Budgets for the Research.

<table>
<thead>
<tr>
<th>Costs in Summary</th>
<th>Cost (ETB)</th>
<th>Source Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Materials & Chemicals Costs</td>
<td>12,100</td>
<td>Haramaya University (College of Veterinary Medicine)</td>
</tr>
<tr>
<td>Per-diem and Transport Costs</td>
<td>30,000</td>
<td>Self</td>
</tr>
<tr>
<td>Grand Total</td>
<td>42,100</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: (5-10) % Contingency.

<table>
<thead>
<tr>
<th>Total budget allocated (ETB)</th>
<th>42,100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5-10) % Contingency (ETB)</td>
<td>3,789 (9% of 42,100)</td>
</tr>
</tbody>
</table>
References

