
 

Genetic Variant Screening and Association Study 
of NKX2-5 in Congenital Heart Disease Patients 

From North India

1

MedDocs Publishers

*Corresponding Author(s):  
Shadab Ahamad & Prachi Kukshal
Sri Sathya Sai Sanjeevani Research Foundation, Palwal, 
Haryana, India-121102. 
Tel: +91-8077055361 & 9313254416 
Email: shadab.ahamad@srisathyasaisanjeevani.org &  
prachi7k@gmail.com

Cite this article: Ahamad S, Krishna R, Jayashree V, Shivaraju A, Kavya GK, et al. Genetic Variant Screening and 
Association Study of NKX2-5 in Congenital Heart Disease Patients from North India. Ann Pediatr. 2024; 7(1): 1143.

 Annals of Pediatrics

Open Access | Research Article

ISSN: 2637-9627

Shadab Ahamad1*; Ramya Krishna2; Jayashree V2; Amrutha Shivaraju2; Kavya GK2; Ajay Kumar1; Subramanian Chellappan3; 
Prachi Kukshal1

1Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India-121102.
2Sri Sathya Sai University for Human Excellence, Muddenahalli, Karnataka, India-585313.
3Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, Palwal, Haryana, India-121102.

Abstract

Background: Globally 1% of the live births are affected 
by some form of congenital heart anomaly. Genetics and 
environment both play a role in its causation but very little 
of these aspects are explored from the Indian subcontinent. 
One of the first and key transcription factors required for 
the formation of the heart during development is NKX2-5. 
Several mutations in this gene have been identified for Con-
genital Heart Diseases (CHDs). In this study, we screened for 
known and novel variants to understand their role in CHDs.

Methods: Two exons and flanking 3’ and 5’ UTR regions 
of NKX2-5 were sequenced in n= 71 CHD cases, followed by 
a case-control test of association and haplotype study.

Results: Only 3 known variants namely rs2277923 
(c.63A> G), rs3729753 (c.606G>C), and rs703752 (c.61G>T) 
were identified in a total of n= 69 cases. Case-control test of 
association revealed no significant allelic or haplotypic asso-
ciation. A genotypic association was observed for rs703752 
in a recessive model (χ2 = 4.4702; p=0.03; Risk score=0.33), 
along with a trend of association for rs3729753 (χ2 = 3.73; 
p=0.053; Risk score=1.68) and rs703752 (p=0.082).

Conclusion: Although we did not identify any new muta-
tions in the coding regions of the NKX2-5 gene, our findings 
are important observations and incite for establishing the 
association between NKX2-5 variants and cardiac defects in 
the context of the north Indian population. There is a need 
to explore the role of other transcription factors, and cardi-
ac developmental pathways and establish their interaction 
and their role in disease biology in the Indian Subcontinent.
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Introduction

Congenital diseases are defects present at birth, and are 
assumed to be caused by both genetic and epigenetic factors 
[1], and are significant public health concerns. Globally 3-4% 
of the populations of live births are affected by some form of 
congenital anomaly [2]. Among these diseases, Congenital Heart 
Disease (CHD) is the most common form with a prevalence of 
approximately 9/1000 live births worldwide [3]. In India alone 
every year approximately 2,40,000 children are born with CHD 
[4]. In low and middle-income countries, the disease burden 
is often high due to limited access to prenatal care, screening, 
and treatment, leading to the cause of infant morbidity and 
mortality [5]. Clinically, CHDs are categorized as cyanotic and 
acyanotic [6], and the most common sub-phenotypes are 
Ventricular Septal Defect (VSD), Atrial Septal Defects (ASD), 
Tetralogy Of Fallot (TOF), Patent Ductus Arteriosus (PDA), and 
transposition of great arteries (TGA) [7].

Genetics plays a vital role in understanding the recurrence of 
congenital anomalies in families [8]. Chromosomal aneuploidies 
(9-18%), Copy Number Variants (CNVs) (10-15%; 3-25% in syn-
dromic and 3-10% in non-syndromic CHD), and single gene dis-
orders (12%) are the main genetic causes of CHD [9]. The tran-
scription factors expressed predominantly in the heart mediate 
the expression of genes encoding cardiac structural proteins or 
regulatory proteins, which are essential for the normal develop-
ment of the heart. Non-syndromic CHDs are usually character-
ized by multiple mutations that affect intricate inter-connected 
processes and can regulate several downstream developmental 
pathways leading to congenital defects [10].

A gene regulatory network that includes several signal trans-
duction pathways and cardiac transcription factors like GATA 
binding protein 4 (GATA4), NK2 homeobox 5 (NKX2-5) and T-Box 
factors (TBX) tightly control the events that take place during 
the development of the heart and interacts with GATA4, TBX, 
serum response factor (SRF) [11], Helix-loop-helix (HEY2) [12] 
and Myocyte Enhancer Factor (MEF2) [13] in early cardiac de-
velopment. Rare alleles and mutations in such transcription fac-
tors would lead to malformation of the heart. The NKX2-5 gene 
is the most studied and the first gene reported to be associated 
with cardiogenesis [14]. It regulates cardiac progenitors, cardiac 
morphogenesis, cardiomyocyte differentiation, and conduction 
system development [15] and is involved in a spectrum of CHD 
subphenotypes [16]. It has also been shown to be involved in 
conditional tumor suppressor genes [17], thyroid hemiagenesis 
[18], and dilated cardiomyopathy [19]. NKX2-5 is also required 
for adult myocardial repair [20]. A total of 11 miRNAs expressed 
in NKX2-5 expressing cardiac Vs non-cardiac mesoderm were 
seen [21]. Expression of NKX2-5 in mice [22], zebrafish [23], and 
chick [24] early cardiac progenitor cells suggests that it is essen-
tial for cardiomyogenesis. Animal Models suggest haploinsuf-
ficient experimental studies on mice with germline disruption 
of the NKX2-5 have shown that mice before birth with abnor-
mal looping hearts and NKX2-5 knockout at the mid-embryonic 
stage cause premature death and defective cardiac morphogen-
esis [15]. Thus, NKX2-5 has been a much-explored candidate 
gene for CHDs and is associated with both syndromic and non-
syndromic CHDs [25].

Structure of NKX2.5

NKX2-5 is a DNA-binding transcriptional activator and a 
member of the evolutionarily conserved NK homeobox gene 
family, which plays a crucial role in organogenesis, and is 

expressed in a variety of tissues during development, including 
the heart, lung, and thyroid gland [26]. The NKX2-5 (5q35.1), 
which codes for a 324 amino acid protein, has two primary exons 
[27]. Similar to other members of the NK2 family of transcription 
factors, it contains a highly conserved Homeodomain (HD) 
(residues 138-197), that has a helix-loop-helix domain with 
three alpha helices, allowing it to interact with DNA.

The protein typically includes several other highly conserved 
structural domains in addition to the homeobox. Near the 
protein’s N-terminal region (10-21 AA), a Tinman domain 
likely functions as a transcriptional repressor. A less conserved 
linker region connects an NK2-Specific Domain (NK2-SD, 212-
234 AA) to HD [28]. A Single-Nucleotide Polymorphism (SNP) 
and mutations in this gene can alter the function of a gene, 
which would cause abnormal cardiac morphogenesis [10]. 
A total of 7 mutations [rs17052019 and rs2277923 (exon 1), 
rs3729938 rs3729753, and rs3729754 (exon 2), & rs703752 
and rs11552707 (3’UTR)] have been reported to be involved 
in congenital heart malformation [29]. Earlier, mutations and 
variations in the NKX2-5 have been linked to various CHDs, 
including ASD, VSD, TOF [30], and other subphenotypes [31]. 
The relationship between NKX2-5 gene variations and CHD 
susceptibility was assessed using a thorough meta-analysis 
program, and the results indicated that the rs703752 and 
rs2277923 polymorphisms of the NKX2-5 gene are associated 
with CHD [32]. In addition, altered expression of NKX2-5 has 
been observed in various forms of heart disease, such as 
dilated cardiomyopathy and arrhythmogenic right ventricular 
dysplasia [33]. To date, more than 60 mutations have been 
found in the NKX2-5 gene [34]. A systematic study on genetic 
variants of NKX2-5 showed approximately 970 variants in the 
global population, of which 143 are identified to be pathogenic 
for humans. Among these 143, around 30 SNPs are found in 
the non-coding region which impacts transcription factor-DNA 
binding affinity, and ultimately can be suggested as key to 
establishing a pathogenic mechanism [35]. The homeodomain 
of this gene carries the maximum pathogenic variant i.e. 49 
in 60 residues [36]. The variants rs703752 and rs2277923 
have been previously associated with CHDs with p-values of 
0.049 and 0.036 respectively in global populations [32]. As 
per the Genome-wide association studies catalog, two SNPs, 
rs6891790-T and rs6882776-A, are highly associated, with Minor 
Allele Frequency (MAF) of 0.346 and 0.418, and p-values of 3 x 
10-26 [37] and 1 x 10-22 [38] respectively and both having role in 
atrial fibrillation. Seven novel mutations, including 4 missense 
variants were identified in NKX2-5 among 26 individuals having 
atrioventricular conduction block with/without other CHDs [10]. 
However, c.95 A > T missense mutation in this gene is found to 
be pathogenic and may cause CHD when studied in silico in an 
Iranian population [28]. Though several associations from the 
intronic regions also have been seen there are difficulties in 
establishing their role in disease biology [35]. Very few of these 
have been functionally characterized [10]. These results strongly 
imply that NKX2-5 is a key player in cardiac morphogenesis, 
cardiac function, and maturation. Therefore, the current study 
aimed to screen for the known genetic variants and identify 
novel mutations if any in NKX2-5.

Materials and Methods

Study design

The study was conducted at Sri Sathya Sai Sanjeevani Re-
search Foundation, Palwal after Institution Ethics Committee 
(IEC) approval. A total of n= 86 non-syndromic CHD cases (n=21 
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ASD, n=20 VSD, n=20 TOF, and n=25 Misc.) from the north In-
dian cohort who underwent CATH or surgical corrective pro-
cedures at dedicated tertiary center Sri Sathya Sai Sanjeevani 
International Centre for Child Heart Care & Research, Palwal 
(Haryana) were included in the study. All the subjects under-
went a detailed clinical investigation with a detailed medical 
history and confirmed by an Echocardiogram (ECHO). Informed 
consent was obtained from all the subjects.

Extraction of genomic DNA and PCR amplification

DNA extracted using the conventional phenol-chloroform 
method followed by requisite quality quantity check was used 
to screen for coding region with exon-intron boundaries (10 
base pairs) of NKX2-5. Primers used to amplify the exons, and 
5’ and 3’ untranslated (UTR) regions of NKX2-5 were designed 
using Primer 3 tool (https://primer3.ut.ee / 4.1.0) (Supplemen-
tary Table 1). PCR was performed on a Veriti thermal cycle (Ap-
plied Biosystems; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA) and amplified products were visualized on a 2% agarose 
gel. Samples were sequenced through a commercial facility. Out 
of 86 north Indian CHD samples screened, 15 were excluded 
either due to bad reads or incomplete information for all 4 se-
quence regions; hence n= 71 samples [n=15 ASD, n=18 VSD, 
n=18 TOF and n=20 Misc. including Tricuspid atresia-4, TGA-1, 
Atrioventricular canal defect-4, Total anomalous pulmonary ve-
nous connection-2, Aorto pulmonary window-3, Double outlet 
right ventricle-1, Coarctation of aorta-1, Pulmonary stenosis-1, 
Hemi-truncus-1, Sub-aortic membrane+PDA-1, Anomalous Left 
Coronary Artery From Pulmonary Artery (ALCAPA)-1] were fi-
nally included for analysis.

Variation detection and statistical analysis

The samples were anonymized and sequenced using the 
Sanger sequencing method at a commercial facility. Sequencing 
profiles were analyzed using ApE (A Plasmid Editor) software 
[39] and matched to the reference sequence. The 71 cases were 
compared to n=490 open source 1000 Genome South Asian 
data for a case-control allelic, genotypic, and sliding window 
haplotypic association using Plink 1.90 beta software (https://
zzz.bwh.harvard.edu/plink/cite.shtml) [40]. P<0.05 was regard-
ed as statistically significant.

Results

Using an ensemble database (https://www.ensembl.org/), 
more than 1300 variants have been reported, of these, we 
screened nearly 900-1000 screened (90 in 5’UTR; 231 in E1; 513 
in E2; and 142 in 3’UTR) which included insertions, deletions, 
synonymous and missense mutations [36].

Mutational analysis: There were no novel mutations seen in 
the study cohort.

Variant screening: We detected 3 known benign variations, 
namely rs2277923 (c.63A>G) in exon 1, rs3729753 (c.606G>C) 
in exon 2, and rs703752 (c.61G>T) in 3’UTR of NKX2-5 in the 
study population (Figure 1). rs2277923 is a highly polymorphic 
missense variant with a global and South Asian (SAS) MAF of 
0.46. The other two SNPs, rs3729753 and rs703752 had a glob-
al/SAS MAF of 0.026/0.066 and 0.256/0.361 respectively.

Case-control association study: All three SNPs were in Hardy 
Weinberg Equilibrium (P≥0.01). No allelic association was ob-
served for the three variants found in the study samples (Table 
1). In the genotypic model, one SNP rs703752 showed associa-
tion in a recessive inheritance model (χ2 = 4.47; p=0.03; Odd 
ratio=0.3; Risk score=0.33), along with the trend of association 
(χ2 = 4.64; p=0.082) in the genotypic association test. The vari-
ant, rs3729753, also showed a genotypic trend of association 
(χ2 = 3.73; p=0.053; Odd ratio=1.84; Risk Score=1.68) in the 
dominant model (Table 2). 

Sliding window haplotypic study: Haplotypic analysis also 
did not yield any clues (Table 3).

Table 1: Allelic association of reported SNPs.

SNP Category A1 A2 F_A F_U ChiSq;p OR

rs703752
3’UTR
c.*61G > T

ASD T G 0.30 0.36 0.47; 0.49 0.76

VSD T G 0.33 0.36 0.12; 0.74 0.89

TOF T G 0.28 0.36 1.05; 0.31 0.68

MISC T G 0.33 0.36 0.22; 0.64 0.85

ALL T G 0.31 0.36 1.41; 0.23 0.79

rs3729753
Exon 2
c. 606 G > C

ASD C G 0.13 0.07 2.04; 0.15 2.16

VSD C G 0.11 0.07 1.09; 0.29 1.76

TOF C G 0.11 0.07 1.09; 0.29 1.76

MISC C G 0.08 0.07 0.045; 0.83 1.14

ALL C G 0.11 0.07 2.87; 0.09 1.66

rs2277923
Exon 1
63A > G

ASD G A 0.40 0.46 0.42; 0.52 0.78

VSD G A 0.39 0.46 0.71; 0.39 0.75

TOF G A 0.47 0.46 0.02; 0.89 1.05

MISC G A 0.50 0.46 0.25; 0.62 1.17

ALL G A 0.44 0.46 0.14; 0.71 0.94
A1: minor allele 1; A2: major allele 2; F_A: frequency of A1 in cases ; 
F_U: frequency of A1 in controls; ChiSq: Pearson’s correlation; p: sig-
nificance; OR: odd ratio; MISC: other miscellaneous CHD type.

Figure 1: Diagrammatic representation of the structure of NKX2-5 and reported SNPs in our study.
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SN
P

A1
A2

TE
ST

U
N

AF
F

AS
D

VS
D

TO
F

M
IS

C
AL

L

AF
F

P
AF

F
P

AF
F

P
AF

F
P

AF
F

P

rs703752

T
G

GE
N

O
**

63
\2

27
\1

99
1\

7\
7

0.
94

1\
10

\7
0.

71
0\

10
\8

0.
29

1\
11

\8
0.

66
3\

38
\3

0
0.

08
2

T
G

TR
EN

D
35

3\
62

5
9\

21
0.

49
12

\2
4

0.
73

10
\2

6
0.

30
13

\2
7

0.
64

44
\9

8
0.

23

T
G

AL
LE

LI
C

35
3\

62
5

9\
21

0.
56

12
\2

4
0.

86
10

\2
6

0.
38

13
\2

7
0.

74
44

\9
8

0.
26

T
G

DO
M

29
0\

19
9

8\
7

0.
79

11
\7

1*
10

\8
0.

81
12

\8
1*

41
\3

0
0.

79

T
G

RE
C

63
\4

26
1\

14
0.

71
1\

17
0.

71
0\

18
0.

15
1\

19
0.

49
3\

68
0.

03
07

rs3729753

C
G

GE
N

O
**

3\
59

\4
27

0\
4\

11
0.

18
0\

4\
14

0.
34

0\
4\

14
0.

34
0\

3\
17

0.
76

0\
15

\5
6

0.
12

C
G

TR
EN

D
65

\9
13

4\
26

0.
16

4\
32

0.
30

4\
32

0.
30

3\
37

0.
83

15
\1

27
0.

09
1

C
G

AL
LE

LI
C

65
\9

13
4\

26
0.

14
4\

32
0.

30
4\

32
0.

30
3\

37
0.

75
15

\1
27

0.
11

C
G

DO
M

62
\4

27
4\

11
0.

12
4\

14
0.

27
4\

14
0.

27
3\

17
0.

73
15

\5
6

0.
05

3

C
G

RE
C

3\
48

6
0\

15
1*

0\
18

1*
0\

18
1*

0\
20

1*
0\

71
1*

rs2277923

G
A

GE
N

O
**

97
\2

56
\1

36
2\

8\
5

0.
83

3\
8\

7
0.

59
2\

13
\3

0.
36

4\
12

\4
0.

79
11

\4
1\

19
0.

66

G
A

TR
EN

D
45

0\
52

8
12

\1
8

0.
50

14
\2

2
0.

39
17

\1
9

0.
88

20
\2

0
0.

61
63

\7
9

0.
70

G
A

AL
LE

LI
C

45
0\

52
8

12
\1

8
0.

58
14

\2
2

0.
49

17
\1

9
1*

20
\2

0
0.

63
63

\7
9

0.
72

G
A

DO
M

35
3\

13
6

10
\5

0.
77

11
\7

0.
29

15
\3

0.
42

16
\4

0.
61

52
\1

9
1*

G
A

RE
C

97
\3

92
2\

13
0.

75
3\

15
1*

2\
16

0.
55

4\
16

1*
11

\6
0

0.
43

*Fishers test p values (in cell counts less than five). Significant p value is in 
bold font
**genotype counts of variant homozygous\heterozygous\wildtype homozy-
gous for each category are denoted

SN
PS

HA
PL

O
TY

PE
F_

U
AS

D
VS

D
TO

F
M

IS
C

AL
L

F_
A

CH
IS

Q
DF

P
F_

A
CH

IS
Q

DF
P

F_
A

CH
IS

Q
DF

P
F_

A
CH

IS
Q

DF
P

F_
A

CH
IS

Q
DF

P

rs
70

37
52

|r
s3

72
97

53
O

M
N

IB
U

S
N

A
N

A
2.

20
2

0.
33

N
A

1.
11

2
0.

57
N

A
1.

78
2

0.
41

N
A

0.
23

2
0.

89
N

A
3.

61
2

0.
17

rs
70

37
52

|r
s3

72
97

53
CG

0.
07

0.
13

2.
04

1
0.

15
0.

11
1.

09
1

0.
29

0.
11

1.
09

1
0.

29
0.

08
0.

05
1

0.
83

0.
11

2.
87

1
0.

09

rs
70

37
52

|r
s3

72
97

53
AC

0.
36

0.
30

0.
47

1
0.

49
0.

33
0.

12
1

0.
73

0.
28

1.
05

1
0.

31
0.

33
0.

22
1

0.
64

0.
31

1.
41

1
0.

23

rs
70

37
52

|r
s3

72
97

53
CC

0.
57

0.
57

0.
00

4
1

0.
95

0.
56

0.
04

1
0.

84
0.

61
0.

21
1

0.
65

0.
60

0.
12

1
0.

73
0.

59
0.

07
1

0.
79

rs
37

29
75

3|
rs

22
77

92
3

O
M

N
IB

U
S

N
A

N
A

1.
13

2
0.

57
N

A
2.

54
2

0.
28

N
A

1.
12

2
0.

57
N

A
0.

25
2

0.
88

N
A

2.
52

2
0.

28

rs
37

29
75

3|
rs

22
77

92
3

GC
0.

07
0.

10
0.

58
1

0.
45

0.
11

1.
09

1
0.

29
0.

11
1.

09
1

0.
29

0.
08

0.
05

1
0.

83
0.

09
1.

97
1

0.
16

rs
37

29
75

3|
rs

22
77

92
3

CC
0.

39
0.

31
0.

79
1

0.
37

0.
28

1.
96

1
0.

16
0.

36
0.

15
1

0.
69

0.
43

0.
16

1
0.

69
0.

35
1.

06
1

0.
30

rs
37

29
75

3|
rs

22
77

92
3

CT
0.

54
0.

59
0.

24
1

0.
63

0.
61

0.
71

1
0.

39
0.

53
0.

02
1

0.
89

0.
50

0.
25

1
0.

62
0.

55
0.

08
1

0.
77

rs
70

37
52

|r
s3

72
97

53
|r

s2
27

79
23

O
M

N
IB

U
S

N
A

N
A

2.
60

3
0.

46
N

A
4.

07
3

0.
25

N
A

2.
69

3
0.

44
N

A
0.

28
3

0.
96

N
A

5.
59

3
0.

13

rs
70

37
52

|r
s3

72
97

53
|r

s2
27

79
23

CG
C

0.
07

0.
10

0.
58

1
0.

45
0.

11
1.

09
1

0.
29

0.
11

1.
09

1
0.

29
0.

08
0.

05
1

0.
83

0.
09

1.
92

1
0.

16

rs
70

37
52

|r
s3

72
97

53
|r

s2
27

79
23

CC
C

0.
39

0.
31

0.
78

1
0.

38
0.

28
1.

94
1

0.
16

0.
36

0.
15

1
0.

69
0.

43
0.

16
1

0.
69

0.
35

1.
01

1
0.

32

rs
70

37
52

|r
s3

72
97

53
|r

s2
27

79
23

AC
T

0.
36

0.
31

0.
30

1
0.

58
0.

33
0.

11
1

0.
74

0.
28

1.
03

1
0.

31
0.

33
0.

21
1

0.
65

0.
31

1.
24

1
0.

26

rs
70

37
52

|r
s3

72
97

53
|r

s2
27

79
23

CC
T

0.
18

0.
27

1.
70

1
0.

19
0.

28
2.

21
1

0.
14

0.
25

1.
14

1
0.

29
0.

18
0.

00
7

1
0.

93
0.

24
2.

94
1

0.
08

7



MedDocs Publishers

5 Annals of Pediatrics

SRF: Serum Response Factor; TBX: T-Box Factor; TGA: Transposi-
tion Of Great Arteries; TOF: Tetralogy Of Fallot; UTR: Untrans-
lated Region; VSD: Ventricular Septal Defect.
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