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Abstract

Single nucleotide polymorphisms are a sort of genetic 
variations, have been identified in numerous genes that 
linked to various cancer types. SNPs in exon regions of hub 
cellular of genes that influence gene expression by variety of 
ways like affect protein structure, function, mRNA structural 
conformation and also translation. Exonal or coding SNPs 
are categorized into two types; non-synonymous and syn-
onymous in accordance with their capability to substitute 
the encoded amino acid. In this mini-review, we addressed 
a diverse of genetic pathways that affect cancer risk through 
exonal SNPs observed in various genomic components. We 
have also emphasised on exonal SNPs’ therapeutic potential 
and their future research significance.

Keywords: Single nucleotide polymorphisms; Exon; 
Synonymous; Non-synonymous; Cancer.

Introduction

Cancer is an array of complex diseases characterized by 
modification or alteration in diverse genes, including proto-on-
cogenes, oncogenes, DNA repair genes, microRNA genes, and 
tumour-suppressor genes, leading to impaired cellular homeo-
stasis and uncontrolled proliferation [1,2]. Extensive research 
has been conducted on the link between genetic variations and 
cancer risk. Genetic alterations, particularly Single Nucleotide 
Polymorphisms (SNPs) found in several genes such as PARK2, 
p53, and FOXO, are the main basis of cancer risk in patients 
[3,4]. The SNPs constitute over 90% of the genetic variation ex-
isting in the DNA of the human genome [5]. These SNPs have 
been connected with the progress of oral, breast, colorectal, 
and liver cancers [6]. Discovered SNPs, the third generation of 
DNA genetic markers after RFLPs (Restriction Fragment Length 
Polymorphisms) and microsatellite polymorphisms. There are 

approximately 4-5 million SNPs that have been discovered, 
which is equal to 1 SNP for every 1,000 bases [17]. Till now, in 
the human genome’s coding regions, about 500,000 SNPs have 
been identified [7]. Various studies have advocated that the mo-
lecular pathways underlying region-based and cancer-related 
diseases SNPs need to be addressed. SNPs are found through-
out the genome; however, within the exon regions of various 
genes, they can alter expression by affecting gene transcription 
and translation processes and modulating, increasing the risk 
of cancer development. The most common types of exons SNPs 
are categorized into two which namely; non-synonymous and 
synonymous coding SNPs (cSNPs), distinguished by their capac-
ity to substitute the encoded amino acid. Previous research has 
found that nsSNPs account for about 50% of mutations that 
linked to hereditary diseases [8,9].
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By studying the genetic changes of exon polymorphisms on 
cancer progression is a difficult task that necessitates a holistic 
approach. The genome-wide association study, helps to identify 
the genetic risk factors that may enhance the risk of cancer im-
plications [10,11]. In the modern era, advancements in genom-
ics, bioinformatics proteomics and, transcriptomics studies have 
provided a valuable insights into the difficult processes that 
underlie numerous complex diseases, including cancer, which 
results in identifying novel therapeutic targets [12]. In this mini-
review, we attempted to focus on exonic region polymorphisms 
and their categories, which enhance cancer risk by altering the 
structure and functions of several proteins and their expression 
via various pathways. In addition, polymorphisms in exons have 
also been studied for their future importance and therapeutic 
potential in cancer patients.

Non-synonymous coding SNPs affect protein structure and 
function

Non-synonymous coding (nsSNPs) of the exon in the gene 
can modify the sequence of Amino Acid (AA), protein functions, 
protein-protein interaction (PPI), solubility, and protein stabil-
ity, all of which responsible to induction of cancer risk [13,14]. 
According to numerous research studies it has been observed 
that most amino acid modifications occur due to changes to 
the first two nucleotides of a codon involvement. As a conse-
quence, AA sequence variations may affect protein secondary 
structure by varying the phosphorylation and hydrogen bond-
ing amount, thereby influencing interactions and functions of 
protein. Hence, these alterations affect the expression levels of 
tumor suppressor and oncogenic proteins as well as cell signal-
ing pathways [13].

The coding region contains 50% SNPs, of which each 25% 
are synonymous, and missense [15]. nsSNPs regulate the physi-
ological and anatomical types of many proteins in human, as 
well as the various gene interaction pathways through disease-
associated proteins [16,17]. However, no every coding region 
SNPs are functionally significant [18]. A study found that ap-
proximately 20% of nsSNPs cause protein damage, which may 
increase the risk of cancer [19]. It is anticipated that nsSNPs af-
fecting cancer risk through protein conformation chaining will 
be found. In recent time, many biological and computational 
software tools are currently available, such as PolyPhen, F-
SNP (Functional SNP), SIFT (Sorting Intolerant From Tolerant), 
CADD, and REVEL which might be helpful to detect the nsSNPs 
impact on structure and functionality of protein for cancer risk 
assessment [20,21]. For instance, an insilico studies discovered 
that 38 nsSNPs in the human CYP1A2 gene are linked to cancer 
risk and pathogenesis as a result of protein structural changes 
[22]. According to one study, the functional process underpin-
ning tumour-allied nsSNPs is somewhat easy and convenient as 
compared to the large number of polymorphisms found in gene 
non-coding regions [23]. A study has found that in a gene multi-
ple exonal SNPs were linked with an augmented risk of colorec-
tal carcinogenesis after examining the entire exon sequence. As 
per previous finding, the missense polymorphism rs3184504 
(p. trp263ARg) in the SH2B3 domain might affect the function 
of proteins that control cell proliferation. Further, coding varia-
tions may also influence variable shear of UTP23 located SNPs 
rs16888728 [24].

On the other hand, a study has demonstrated that non-syn-
onymous cSNPs in the Epidermal Growth Factor Receptor (EGFR) 
gene reduces the Tyrosine Kinase Domain (TKD), which is due to 
two TKIs (tyrosine kinase inhibitors), particularly erlotinib and ge-

fitinib. In the case of erlotinib which makes one H-bond with the 
AA Met769 in the EGFR, while gefitinib generates two H-bonds 
with the Gly772 AA. Therefore, this study analysed that gefi-
tinib molecules have a higher binding affinity for EGFR proteins 
containing five different variants as compare to EGFR protein 
wild-type. EGFR-TKD polymorphisms cause structural modifica-
tions that improve protein sensitivity and activity to TKIs [25]. 
According to previous data analysis, the N-Acetyltransfer-
ase 2 (NAT2) gene SNP rs752955201 replaces valine with 
a bulkier isoleucine, resulting in lower affinity for sub-
strates N-acetyltransferase 2 and increased affinity for sub-
strates N-acetyltransferase 1 [26]. The process by which 
SNPs found in gene coding regions influence cancer risk is 
inextricably linked to the function of coded proteins. Evi-
dence suggests that the Leu858Arg mutation enhances EG-
FR’s dimer formation and promotes cell proliferation [27]. 
Interestingly, protein-protein interactions can detect a large 
number of previously unidentified mutations. Various scientific 
groups and researchers have tended to focus on particular sig-
nalling pathways, genes, and genetic changes that are intriguing 
although likewise conducting complete-exon association stud-
ies to identify any associated exon SNPs with significant impacts 
on these molecules and their mechanisms [28].

Effect of Synonymous cSNPs Indirectly Modify Protein 
Structure and Function

The sequence of AA which is encoded by the protein is un-
affected by synonymous cSNPs. The most common nucleotide 
alteration is a substitution in the codon’s third base. These pro-
teins were previously considered insignificant because their 
amino acid sequence is identical to the wild type. Nevertheless, 
recent investigation demonstrates that synonymous cSNPs in-
fluence gene function as well as expression via modulating the 
expression level of genes in the vicinity. Multiple scientific re-
searches have proven that synonymous mutations impair pro-
tein expression, structure and also function.

Synonymous cSNPs alter mRNAs and proteins structural 
conformation

These types of cSNPs generate distinct haplotype SNPs that 
influence mRNA secondary structure, especially stem-ring like 
structure, stability, and decreasing activity of the enzyme. As 
per instance, two synonymous and one nsSNPs generate dis-
tinct haplotype SNPs in the COMT (Catechol-O-Methyltransfer-
ase) gene. The primary COMT haplotypes differ in messenger 
RNA’s local stem-loop configurations. mRNAs with stable sec-
ondary structures have inhibited the expression level and ac-
tivity of COMT gene [29]. Previous studies have also revealed 
that a synonymous SNP in the MDR1 (multidrug transporter) 
gene influences the P-glycoprotein production which is an es-
sential drug transport protein [30]. This influences its expres-
sion as well as their function that ultimately leading to drug re-
sistance. It has analysed that SNPs located in MDR1, including 
2677G→T, 1236C→T, and 3435C→T, are found in India, China, 
and Malaysia at a range of 31-49%. High linkage disequilibrium 
between these all three polymorphisms results in a haplotype 
that reduces MDR1 protein activity via minor alteration in the 
configuration of their ATP-binding position. The MDR1 SNPs 
T1236C and C3435T can potentially affect nsSNPs. The SNPs 
C3435T alters the P-glycoprotein insertion into the membrane 
and co- translational folding, influencing the substrate-inhibitor 
structure interface sites [31]. The three SNPs correspond to un-
usual wild-form codons allied with changes in translation and 
termination rates [32]. The observed transformations in drug-
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substrate binding point to a process by which synonymous poly-
morphisms influence nsSNPs, resulting in diverse clinical out-
comes [33]. Synonymous polymorphisms cause several changes 
in mRNA including splicing, structure, stability, and protein 
folding. These modifications significantly impact protein func-
tion, subsequent differences in cellular reactions to therapeu-
tic sites, which clarifies why individual patients respond differ-
ently to drugs [34]. Similarly, a study identified the rs74090726 
synonymous SNPs situated in 5th exon regions of gene MCAD 
which disables the exonal splicing enhancer, resulting in exon 
skipping, insufficient MCAD, as well as functional protein dam-
age [35]. Recent finding supported that in the exon region, the 
ELP2 gene influences pre-mRNA splicing mediated by splicing 
a quantitative trait locus due to variation in the single base. In 
addition, a study also suggested by insilico analysis that exonal 
SNPs can also influence the mechanism of RNA processing. Such 
as, SNPs rs78378222 situated in the 3′ UTR site of TP53 changes 
the sequence, modifying TP53’s polyadenylation signal and sub-
sequent deficient at 3′-terminal processing of TP53 mRNA [36].

Synonymous cSNPs affect translational rates by genetic 
linkage

A haplotype defined as a group of single nucleotide varia-
tions on a one chromatid which are statistically linked. The 
number of variations on one chromosome might offer insights 
into alterations to gene function, including cumulative and syn-
ergistic effects. Surprisingly, multiple investigations have shown 
that the polymorphisms in exon 4 are in substantial linkage dis-
equilibrium [37]. Numerous recent studies have indicated that 
cSNPs can increase or decrease the mobility of ribosomes along 
mRNA, affecting translation dynamics, accuracy and, as a result, 
changes in structure and function of protein. These processes 
can generate secondary structures of mRNA and proteins, in-
cluding α helix β folding [38]. Furthermore, in synonymous 
codon families the usage of codon is non arbitrary, and base 
structure selection is determined by the codon’s 2nd base posi-
tion [39]. In few conditions, the preference for structure of the 
base extends to the 3rd base [40]. Moreover, codon usage has 
a significant impact on mRNA expression levels via based on 
translation impacts on mRNA degeneration while translation-
independent impacts on posttranscriptional and transcriptional 
events [41].

Figure 1: Shown the nsSNPs and cSNPs in various gene related 
to cancer risk.

SNPs Gene cSNPs / nsSNPs References

rs3184504 SH2B3 nsSNPs [24]

rs752955201 NAT2 nsSNPs [26]

rs78378222 TP53 cSNPs [36]

rs74090726 MCAD cSNPs [35]

T1236C and C3435T MDR1 cSNPs [31]

Figure 1: (Modified and adapted from [13]): Figure depicts the 
processes that relate exon regions located SNPs to cancer risk. 
nsSNPs alter the AA sequence of the encoded protein. Through 
genetic linkage synonymous exon cSNPs alter protein conforma-
tion and function.

Exonal SNPs in cancer therapeutics and research

The introduction of new technologies, such as microarray-
based genotyping, genome-wide association study and high 
throughput next generation sequencing, has created new op-
portunities for SNPs to be employed in therapeutic methods. 
It is expected that the use of exonal SNPs to understand the 
processes and biology of varying medication response, as well 
as treatment individualization depending on an individual’s ge-
nomic makeup, will become indispensable in the near future. As 
a result, pharmacogenomics could assist address the question 

of how inherited changes in a single gene affect drug mobiliza-
tion and biological action. For example, a study has recognized 
that synonymous SNPs of exon in ABCB1 (P-glycoprotein), which 
is involved in multidrug resistance and pharmacokinetics in hu-
man cancer cells that might affect both the structure and func-
tion of proteins [32]. Likewise, exonal SNPs act as a predictive 
and prognostic biomarker for cancer, which is beneficial in de-
termining medication and therapy decisions in cancer patients.

 Future perspective

This present mini-review addressed the role of exonal SNPs 
in several genes leads to cancer risk in individuals. Several no-
table affected structure and functions of various genes are com-
piling a comprehensive list of nsSNPs and synonymous SNPs 
that may be linked to cancer development. As a result, the role 
of both nsSNPs and synonymous SNPs in cancer progression 
has been confirmed. However, the precise role of exonal SNPs 
in many genes in cancer remains unknown. Although genetic 
data robustly links exonal polymorphisms to cancer risk, on 
the other side the biochemical and cell biology effects of non-
synonymous cSNPs remain unclear. Further research is needed 
to fully understand how synonymous SNPs affect translation ki-
netics. A thorough analysis of exonic region SNPs in cancer is 
required to provide adequate literature. This review builds the 
way for future investigations into the recognition of new genetic 
biomarkers for cancer diagnosis and treatment.
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